gtsam/base/Lie.h

196 lines
5.3 KiB
C++
Raw Blame History

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file Lie.h
* @brief Base class and basic functions for Lie types
* @author Richard Roberts
* @author Alex Cunningham
*/
#pragma once
#include <string>
#include <gtsam/base/Matrix.h>
namespace gtsam {
/**
* These core global functions can be specialized by new Lie types
* for better performance.
*/
/** Compute l0 s.t. l2=l1*l0 */
template<class T>
inline T between_default(const T& l1, const T& l2) { return l1.inverse().compose(l2); }
/** Log map centered at l0, s.t. exp(l0,log(l0,lp)) = lp */
template<class T>
inline Vector logmap_default(const T& l0, const T& lp) { return T::Logmap(l0.between(lp)); }
/** Exponential map centered at l0, s.t. exp(t,d) = t*exp(d) */
template<class T>
inline T expmap_default(const T& t, const Vector& d) { return t.compose(T::Expmap(d)); }
/**
* Base class for Lie group type
* This class uses the Curiously Recurring Template design pattern to allow for
* concept checking using a private function.
*
* T is the derived Lie type, like Point2, Pose3, etc.
*
* By convention, we use capital letters to designate a static function
*/
template <class T>
class Lie {
private:
/** concept checking function - implement the functions this demands */
static void concept_check(const T& t) {
/** assignment */
T t2 = t;
/**
* Returns dimensionality of the tangent space
*/
size_t dim_ret = t.dim();
/**
* Returns Exponential map update of T
* Default implementation calls global binary function
*/
T expmap_ret = t.expmap(gtsam::zero(dim_ret));
/** expmap around identity */
T expmap_identity_ret = T::Expmap(gtsam::zero(dim_ret));
/**
* Returns Log map
* Default Implementation calls global binary function
*/
Vector logmap_ret = t.logmap(t2);
/** Logmap around identity */
Vector logmap_identity_ret = T::Logmap(t);
/** Compute l0 s.t. l2=l1*l0, where (*this) is l1 */
T between_ret = t.between(t2);
/** compose with another object */
T compose_ret = t.compose(t2);
/** invert the object and yield a new one */
T inverse_ret = t.inverse();
}
/**
* The necessary functions to implement for Lie are defined
* below with additional details as to the interface. The
* concept checking function above will check whether or not
* the function exists and throw compile-time errors.
*/
/**
* Returns dimensionality of the tangent space
*/
// inline size_t dim() const;
/**
* Returns Exponential map update of T
* A default implementation of expmap(*this, lp) is available:
* expmap_default()
*/
// T expmap(const Vector& v) const;
/** expmap around identity */
// static T Expmap(const Vector& v);
/**
* Returns Log map
* A default implementation of logmap(*this, lp) is available:
* logmap_default()
*/
// Vector logmap(const T& lp) const;
/** Logmap around identity */
// static Vector Logmap(const T& p);
/**
* Compute l0 s.t. l2=l1*l0, where (*this) is l1
* A default implementation of between(*this, lp) is available:
* between_default()
*/
// T between(const T& l2) const;
/** compose with another object */
// inline T compose(const T& p) const;
/** invert the object and yield a new one */
// inline T inverse() const;
};
/** Call print on the object */
template<class T>
inline void print(const T& object, const std::string& s = "") {
object.print(s);
}
/** Call equal on the object */
template<class T>
inline bool equal(const T& obj1, const T& obj2, double tol) {
return obj1.equals(obj2, tol);
}
/** Call equal on the object without tolerance (use default tolerance) */
template<class T>
inline bool equal(const T& obj1, const T& obj2) {
return obj1.equals(obj2);
}
/**
* Three term approximation of the Baker<65>Campbell<6C>Hausdorff formula
* In non-commutative Lie groups, when composing exp(Z) = exp(X)exp(Y)
* it is not true that Z = X+Y. Instead, Z can be calculated using the BCH
* formula: Z = X + Y + [X,Y]/2 + [X-Y,[X,Y]]/12 - [Y,[X,[X,Y]]]/24
* http://en.wikipedia.org/wiki/Baker<65>Campbell<6C>Hausdorff_formula
*/
template<class T>
T BCH(const T& X, const T& Y) {
static const double _2 = 1. / 2., _12 = 1. / 12., _24 = 1. / 24.;
T X_Y = bracket(X, Y);
return X + Y + _2 * X_Y + _12 * bracket(X - Y, X_Y) - _24 * bracket(Y,
bracket(X, X_Y));
}
/**
* Declaration of wedge (see Murray94book) used to convert
* from n exponential coordinates to n*n element of the Lie algebra
*/
template <class T> Matrix wedge(const Vector& x);
/**
* Exponential map given exponential coordinates
* class T needs a wedge<> function and a constructor from Matrix
* @param x exponential coordinates, vector of size n
* @ return a T
*/
template <class T>
T expm(const Vector& x, int K=7) {
Matrix xhat = wedge<T>(x);
return expm(xhat,K);
}
} // namespace gtsam