425 lines
15 KiB
C++
425 lines
15 KiB
C++
/**
|
|
* @file TupleConfig.h
|
|
* @author Richard Roberts
|
|
* @author Manohar Paluri
|
|
* @author Alex Cunningham
|
|
*/
|
|
|
|
#include <gtsam/nonlinear/LieConfig.h>
|
|
#include <gtsam/linear/VectorConfig.h>
|
|
|
|
#pragma once
|
|
|
|
namespace gtsam {
|
|
|
|
/**
|
|
* TupleConfigs are a structure to manage heterogenous LieConfigs, so as to
|
|
* enable different types of variables/keys to be used simultaneously. The
|
|
* interface is designed to mimic that of a single LieConfig.
|
|
*
|
|
* This uses a recursive structure of config pairs to form a lisp-like
|
|
* list, with a special case (TupleConfigEnd) that contains only one config
|
|
* at the end. Because this recursion is done at compile time, there is no
|
|
* runtime performance hit to using this structure.
|
|
*
|
|
* For an easier to use approach, there are TupleConfigN classes, which wrap
|
|
* the recursive TupleConfigs together as a single class, so you can have
|
|
* mixed-type classes from 2-6 types. Note that a TupleConfig2 is equivalent
|
|
* to the previously used PairConfig.
|
|
*
|
|
* Design and extension note:
|
|
* To implement a recursively templated data structure, note that most operations
|
|
* have two versions: one with templates and one without. The templated one allows
|
|
* for the arguments to be passed to the next config, while the specialized one
|
|
* operates on the "first" config. TupleConfigEnd contains only the specialized version.
|
|
*/
|
|
template<class Config1, class Config2>
|
|
class TupleConfig : public Testable<TupleConfig<Config1, Config2> > {
|
|
|
|
protected:
|
|
// Data for internal configs
|
|
Config1 first_; /// Arbitrary config
|
|
Config2 second_; /// A TupleConfig or TupleConfigEnd, which wraps an arbitrary config
|
|
|
|
public:
|
|
// typedefs for config subtypes
|
|
typedef class Config1::Key Key1;
|
|
typedef class Config1::Value Value1;
|
|
|
|
/** default constructor */
|
|
TupleConfig() {}
|
|
|
|
/** Copy constructor */
|
|
TupleConfig(const TupleConfig<Config1, Config2>& config) :
|
|
first_(config.first_), second_(config.second_) {}
|
|
|
|
/** Construct from configs */
|
|
TupleConfig(const Config1& cfg1, const Config2& cfg2) :
|
|
first_(cfg1), second_(cfg2) {}
|
|
|
|
virtual ~TupleConfig() {}
|
|
|
|
/** Print */
|
|
void print(const std::string& s = "") const {
|
|
first_.print(s);
|
|
second_.print();
|
|
}
|
|
|
|
/** Equality with tolerance for keys and values */
|
|
bool equals(const TupleConfig<Config1, Config2>& c, double tol=1e-9) const {
|
|
return first_.equals(c.first_, tol) && second_.equals(c.second_, tol);
|
|
}
|
|
|
|
/**
|
|
* Insert a key/value pair to the config.
|
|
* Note: if the key is already in the config, the config will not be changed.
|
|
* Use update() to allow for changing existing values.
|
|
* @param key is the key - can be an int (second version) if the can can be initialized from an int
|
|
* @param value is the value to insert
|
|
*/
|
|
template<class Key, class Value>
|
|
void insert(const Key& key, const Value& value) {second_.insert(key, value);}
|
|
void insert(const int& key, const Value1& value) {first_.insert(Key1(key), value);}
|
|
void insert(const Key1& key, const Value1& value) {first_.insert(key, value);}
|
|
|
|
/**
|
|
* Insert a complete config at a time.
|
|
* Note: if the key is already in the config, the config will not be changed.
|
|
* Use update() to allow for changing existing values.
|
|
* @param config is a full config to add
|
|
*/
|
|
template<class Cfg1, class Cfg2>
|
|
void insert(const TupleConfig<Cfg1, Cfg2>& config) { second_.insert(config); }
|
|
void insert(const TupleConfig<Config1, Config2>& config) {
|
|
first_.insert(config.first_);
|
|
second_.insert(config.second_);
|
|
}
|
|
|
|
/**
|
|
* Update function for whole configs - this will change existing values
|
|
* @param config is a config to add
|
|
*/
|
|
template<class Cfg1, class Cfg2>
|
|
void update(const TupleConfig<Cfg1, Cfg2>& config) { second_.update(config); }
|
|
void update(const TupleConfig<Config1, Config2>& config) {
|
|
first_.update(config.first_);
|
|
second_.update(config.second_);
|
|
}
|
|
|
|
/**
|
|
* Update function for single key/value pairs - will change existing values
|
|
* @param key is the variable identifier
|
|
* @param value is the variable value to update
|
|
*/
|
|
template<class Key, class Value>
|
|
void update(const Key& key, const Value& value) { second_.update(key, value); }
|
|
void update(const Key1& key, const Value1& value) { first_.update(key, value); }
|
|
|
|
/**
|
|
* Insert a subconfig
|
|
* @param config is the config to insert
|
|
*/
|
|
template<class Cfg>
|
|
void insertSub(const Cfg& config) { second_.insertSub(config); }
|
|
void insertSub(const Config1& config) { first_.insert(config); }
|
|
|
|
/** erase an element by key */
|
|
template<class Key>
|
|
void erase(const Key& j) { second_.erase(j); }
|
|
void erase(const Key1& j) { first_.erase(j); }
|
|
|
|
/** clears the config */
|
|
void clear() { first_.clear(); second_.clear(); }
|
|
|
|
/** determine whether an element exists */
|
|
template<class Key>
|
|
bool exists(const Key& j) const { return second_.exists(j); }
|
|
bool exists(const Key1& j) const { return first_.exists(j); }
|
|
|
|
/** a variant of exists */
|
|
template<class Key>
|
|
boost::optional<typename Key::Value_t> exists_(const Key& j) const { return second_.exists_(j); }
|
|
boost::optional<Value1> exists_(const Key1& j) const { return first_.exists_(j); }
|
|
|
|
/** access operator */
|
|
template<class Key>
|
|
const typename Key::Value_t & operator[](const Key& j) const { return second_[j]; }
|
|
const Value1& operator[](const Key1& j) const { return first_[j]; }
|
|
|
|
/** at access function */
|
|
template<class Key>
|
|
const typename Key::Value_t & at(const Key& j) const { return second_.at(j); }
|
|
const Value1& at(const Key1& j) const { return first_.at(j); }
|
|
|
|
/** direct config access */
|
|
const Config1& config() const { return first_; }
|
|
const Config2& rest() const { return second_; }
|
|
|
|
/** zero: create VectorConfig of appropriate structure */
|
|
VectorConfig zero() const {
|
|
VectorConfig z1 = first_.zero(), z2 = second_.zero();
|
|
z2.insert(z1);
|
|
return z2;
|
|
}
|
|
|
|
/** @return number of key/value pairs stored */
|
|
size_t size() const { return first_.size() + second_.size(); }
|
|
|
|
/** @return true if config is empty */
|
|
bool empty() const { return first_.empty() && second_.empty(); }
|
|
|
|
/** @return The dimensionality of the tangent space */
|
|
size_t dim() const { return first_.dim() + second_.dim(); }
|
|
|
|
/** Expmap */
|
|
TupleConfig<Config1, Config2> expmap(const VectorConfig& delta) const {
|
|
return TupleConfig(first_.expmap(delta), second_.expmap(delta));
|
|
}
|
|
|
|
/** logmap each element */
|
|
VectorConfig logmap(const TupleConfig<Config1, Config2>& cp) const {
|
|
VectorConfig ret(first_.logmap(cp.first_));
|
|
ret.insert(second_.logmap(cp.second_));
|
|
return ret;
|
|
}
|
|
|
|
private:
|
|
/** Serialization function */
|
|
friend class boost::serialization::access;
|
|
template<class Archive>
|
|
void serialize(Archive & ar, const unsigned int version) {
|
|
ar & BOOST_SERIALIZATION_NVP(first_);
|
|
ar & BOOST_SERIALIZATION_NVP(second_);
|
|
}
|
|
|
|
};
|
|
|
|
/**
|
|
* End of a recursive TupleConfig - contains only one config
|
|
*
|
|
* Do not use this class directly - it should only be used as a part
|
|
* of a recursive structure
|
|
*/
|
|
template<class Config>
|
|
class TupleConfigEnd : public Testable<TupleConfigEnd<Config> > {
|
|
|
|
protected:
|
|
// Data for internal configs
|
|
Config first_;
|
|
|
|
public:
|
|
// typedefs
|
|
typedef class Config::Key Key1;
|
|
typedef class Config::Value Value1;
|
|
|
|
TupleConfigEnd() {}
|
|
|
|
TupleConfigEnd(const TupleConfigEnd<Config>& config) :
|
|
first_(config.first_) {}
|
|
|
|
TupleConfigEnd(const Config& cfg) :
|
|
first_(cfg) {}
|
|
|
|
virtual ~TupleConfigEnd() {}
|
|
|
|
void print(const std::string& s = "") const {
|
|
first_.print();
|
|
}
|
|
|
|
bool equals(const TupleConfigEnd<Config>& c, double tol=1e-9) const {
|
|
return first_.equals(c.first_, tol);
|
|
}
|
|
|
|
void insert(const Key1& key, const Value1& value) {first_.insert(key, value); }
|
|
void insert(const int& key, const Value1& value) {first_.insert(Key1(key), value);}
|
|
|
|
void insert(const TupleConfigEnd<Config>& config) {first_.insert(config.first_); }
|
|
|
|
void update(const TupleConfigEnd<Config>& config) {first_.update(config.first_); }
|
|
|
|
void update(const Key1& key, const Value1& value) { first_.update(key, value); }
|
|
|
|
void insertSub(const Config& config) {first_.insert(config); }
|
|
|
|
const Value1& operator[](const Key1& j) const { return first_[j]; }
|
|
|
|
const Config& config() const { return first_; }
|
|
|
|
void erase(const Key1& j) { first_.erase(j); }
|
|
|
|
void clear() { first_.clear(); }
|
|
|
|
bool empty() const { return first_.empty(); }
|
|
|
|
bool exists(const Key1& j) const { return first_.exists(j); }
|
|
|
|
boost::optional<Value1> exists_(const Key1& j) const { return first_.exists_(j); }
|
|
|
|
const Value1& at(const Key1& j) const { return first_.at(j); }
|
|
|
|
VectorConfig zero() const {
|
|
VectorConfig z = first_.zero();
|
|
return z;
|
|
}
|
|
|
|
size_t size() const { return first_.size(); }
|
|
|
|
size_t dim() const { return first_.dim(); }
|
|
|
|
TupleConfigEnd<Config> expmap(const VectorConfig& delta) const {
|
|
return TupleConfigEnd(first_.expmap(delta));
|
|
}
|
|
|
|
VectorConfig logmap(const TupleConfigEnd<Config>& cp) const {
|
|
VectorConfig ret(first_.logmap(cp.first_));
|
|
return ret;
|
|
}
|
|
|
|
private:
|
|
friend class boost::serialization::access;
|
|
template<class Archive>
|
|
void serialize(Archive & ar, const unsigned int version) {
|
|
ar & BOOST_SERIALIZATION_NVP(first_);
|
|
}
|
|
};
|
|
|
|
/**
|
|
* Wrapper classes to act as containers for configs. Note that these can be cascaded
|
|
* recursively, as they are TupleConfigs, and are primarily a short form of the config
|
|
* structure to make use of the TupleConfigs easier.
|
|
*
|
|
* The interface is designed to mimic PairConfig, but for 2-6 config types.
|
|
*/
|
|
|
|
template<class C1>
|
|
class TupleConfig1 : public TupleConfigEnd<C1> {
|
|
public:
|
|
// typedefs
|
|
typedef C1 Config1;
|
|
|
|
typedef TupleConfigEnd<C1> Base;
|
|
typedef TupleConfig1<C1> This;
|
|
|
|
TupleConfig1() {}
|
|
TupleConfig1(const This& config);
|
|
TupleConfig1(const Base& config);
|
|
TupleConfig1(const Config1& cfg1);
|
|
|
|
// access functions
|
|
inline const Config1& first() const { return this->config(); }
|
|
};
|
|
|
|
template<class C1, class C2>
|
|
class TupleConfig2 : public TupleConfig<C1, TupleConfigEnd<C2> > {
|
|
public:
|
|
// typedefs
|
|
typedef C1 Config1;
|
|
typedef C2 Config2;
|
|
|
|
typedef TupleConfig<C1, TupleConfigEnd<C2> > Base;
|
|
typedef TupleConfig2<C1, C2> This;
|
|
|
|
TupleConfig2() {}
|
|
TupleConfig2(const This& config);
|
|
TupleConfig2(const Base& config);
|
|
TupleConfig2(const Config1& cfg1, const Config2& cfg2);
|
|
|
|
// access functions
|
|
inline const Config1& first() const { return this->config(); }
|
|
inline const Config2& second() const { return this->rest().config(); }
|
|
};
|
|
|
|
template<class C1, class C2, class C3>
|
|
class TupleConfig3 : public TupleConfig<C1, TupleConfig<C2, TupleConfigEnd<C3> > > {
|
|
public:
|
|
// typedefs
|
|
typedef C1 Config1;
|
|
typedef C2 Config2;
|
|
typedef C3 Config3;
|
|
|
|
TupleConfig3() {}
|
|
TupleConfig3(const TupleConfig<C1, TupleConfig<C2, TupleConfigEnd<C3> > >& config);
|
|
TupleConfig3(const TupleConfig3<C1, C2, C3>& config);
|
|
TupleConfig3(const Config1& cfg1, const Config2& cfg2, const Config3& cfg3);
|
|
|
|
// access functions
|
|
inline const Config1& first() const { return this->config(); }
|
|
inline const Config2& second() const { return this->rest().config(); }
|
|
inline const Config3& third() const { return this->rest().rest().config(); }
|
|
};
|
|
|
|
template<class C1, class C2, class C3, class C4>
|
|
class TupleConfig4 : public TupleConfig<C1, TupleConfig<C2,TupleConfig<C3, TupleConfigEnd<C4> > > > {
|
|
public:
|
|
// typedefs
|
|
typedef C1 Config1;
|
|
typedef C2 Config2;
|
|
typedef C3 Config3;
|
|
typedef C4 Config4;
|
|
|
|
typedef TupleConfig<C1, TupleConfig<C2,TupleConfig<C3, TupleConfigEnd<C4> > > > Base;
|
|
typedef TupleConfig4<C1, C2, C3, C4> This;
|
|
|
|
TupleConfig4() {}
|
|
TupleConfig4(const This& config);
|
|
TupleConfig4(const Base& config);
|
|
TupleConfig4(const Config1& cfg1, const Config2& cfg2, const Config3& cfg3,const Config4& cfg4);
|
|
|
|
// access functions
|
|
inline const Config1& first() const { return this->config(); }
|
|
inline const Config2& second() const { return this->rest().config(); }
|
|
inline const Config3& third() const { return this->rest().rest().config(); }
|
|
inline const Config4& fourth() const { return this->rest().rest().rest().config(); }
|
|
};
|
|
|
|
template<class C1, class C2, class C3, class C4, class C5>
|
|
class TupleConfig5 : public TupleConfig<C1, TupleConfig<C2, TupleConfig<C3, TupleConfig<C4, TupleConfigEnd<C5> > > > > {
|
|
public:
|
|
// typedefs
|
|
typedef C1 Config1;
|
|
typedef C2 Config2;
|
|
typedef C3 Config3;
|
|
typedef C4 Config4;
|
|
typedef C5 Config5;
|
|
|
|
TupleConfig5() {}
|
|
TupleConfig5(const TupleConfig5<C1, C2, C3, C4, C5>& config);
|
|
TupleConfig5(const TupleConfig<C1, TupleConfig<C2, TupleConfig<C3, TupleConfig<C4, TupleConfigEnd<C5> > > > >& config);
|
|
TupleConfig5(const Config1& cfg1, const Config2& cfg2, const Config3& cfg3,
|
|
const Config4& cfg4, const Config5& cfg5);
|
|
|
|
// access functions
|
|
inline const Config1& first() const { return this->config(); }
|
|
inline const Config2& second() const { return this->rest().config(); }
|
|
inline const Config3& third() const { return this->rest().rest().config(); }
|
|
inline const Config4& fourth() const { return this->rest().rest().rest().config(); }
|
|
inline const Config5& fifth() const { return this->rest().rest().rest().rest().config(); }
|
|
};
|
|
|
|
template<class C1, class C2, class C3, class C4, class C5, class C6>
|
|
class TupleConfig6 : public TupleConfig<C1, TupleConfig<C2, TupleConfig<C3, TupleConfig<C4, TupleConfig<C5, TupleConfigEnd<C6> > > > > > {
|
|
public:
|
|
// typedefs
|
|
typedef C1 Config1;
|
|
typedef C2 Config2;
|
|
typedef C3 Config3;
|
|
typedef C4 Config4;
|
|
typedef C5 Config5;
|
|
typedef C6 Config6;
|
|
|
|
TupleConfig6() {}
|
|
TupleConfig6(const TupleConfig6<C1, C2, C3, C4, C5, C6>& config);
|
|
TupleConfig6(const TupleConfig<C1, TupleConfig<C2, TupleConfig<C3, TupleConfig<C4, TupleConfig<C5, TupleConfigEnd<C6> > > > > >& config);
|
|
TupleConfig6(const Config1& cfg1, const Config2& cfg2, const Config3& cfg3,
|
|
const Config4& cfg4, const Config5& cfg5, const Config6& cfg6);
|
|
// access functions
|
|
inline const Config1& first() const { return this->config(); }
|
|
inline const Config2& second() const { return this->rest().config(); }
|
|
inline const Config3& third() const { return this->rest().rest().config(); }
|
|
inline const Config4& fourth() const { return this->rest().rest().rest().config(); }
|
|
inline const Config5& fifth() const { return this->rest().rest().rest().rest().config(); }
|
|
inline const Config6& sixth() const { return this->rest().rest().rest().rest().rest().config(); }
|
|
};
|
|
|
|
}
|