gtsam/gtsam/slam/tests/testSmartProjectionFactorP.cpp

1273 lines
47 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file testSmartProjectionFactorP.cpp
* @brief Unit tests for SmartProjectionFactorP Class
* @author Chris Beall
* @author Luca Carlone
* @author Zsolt Kira
* @author Frank Dellaert
* @date August 2021
*/
#include "smartFactorScenarios.h"
#include <gtsam/slam/PoseTranslationPrior.h>
#include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h>
#include <gtsam/base/numericalDerivative.h>
#include <gtsam/base/serializationTestHelpers.h>
#include <CppUnitLite/TestHarness.h>
#include <boost/assign/std/map.hpp>
#include <iostream>
using namespace boost::assign;
using namespace std::placeholders;
static const double rankTol = 1.0;
// Create a noise model for the pixel error
static const double sigma = 0.1;
static SharedIsotropic model(noiseModel::Isotropic::Sigma(2, sigma));
// Convenience for named keys
using symbol_shorthand::X;
using symbol_shorthand::L;
// tests data
static Symbol x1('X', 1);
static Symbol x2('X', 2);
static Symbol x3('X', 3);
static Point2 measurement1(323.0, 240.0);
LevenbergMarquardtParams lmParams;
/* ************************************************************************* */
TEST( SmartProjectionFactorP, Constructor) {
using namespace vanillaPose;
SmartFactorP::shared_ptr factor1(new SmartFactorP(model));
}
/* ************************************************************************* */
TEST( SmartProjectionFactorP, Constructor2) {
using namespace vanillaPose;
SmartProjectionParams params;
params.setRankTolerance(rankTol);
SmartFactorP factor1(model, params);
}
/* ************************************************************************* */
TEST( SmartProjectionFactorP, Constructor3) {
using namespace vanillaPose;
SmartFactorP::shared_ptr factor1(new SmartFactorP(model));
factor1->add(measurement1, x1, sharedK);
}
/* ************************************************************************* */
TEST( SmartProjectionFactorP, Constructor4) {
using namespace vanillaPose;
SmartProjectionParams params;
params.setRankTolerance(rankTol);
SmartFactorP factor1(model, params);
factor1.add(measurement1, x1, sharedK);
}
/* ************************************************************************* */
TEST( SmartProjectionFactorP, Equals ) {
using namespace vanillaPose;
SmartFactorP::shared_ptr factor1(new SmartFactorP(model));
factor1->add(measurement1, x1, sharedK);
SmartFactorP::shared_ptr factor2(new SmartFactorP(model));
factor2->add(measurement1, x1, sharedK);
CHECK(assert_equal(*factor1, *factor2));
}
/* *************************************************************************/
TEST( SmartProjectionFactorP, noiseless ) {
using namespace vanillaPose;
// Project two landmarks into two cameras
Point2 level_uv = level_camera.project(landmark1);
Point2 level_uv_right = level_camera_right.project(landmark1);
SmartFactorP factor(model);
factor.add(level_uv, x1, sharedK);
factor.add(level_uv_right, x2, sharedK);
Values values; // it's a pose factor, hence these are poses
values.insert(x1, cam1.pose());
values.insert(x2, cam2.pose());
double actualError = factor.error(values);
double expectedError = 0.0;
EXPECT_DOUBLES_EQUAL(expectedError, actualError, 1e-7);
SmartFactorP::Cameras cameras = factor.cameras(values);
double actualError2 = factor.totalReprojectionError(cameras);
EXPECT_DOUBLES_EQUAL(expectedError, actualError2, 1e-7);
// Calculate expected derivative for point (easiest to check)
std::function<Vector(Point3)> f = //
std::bind(&SmartFactorP::whitenedError<Point3>, factor, cameras,
std::placeholders::_1);
// Calculate using computeEP
Matrix actualE;
factor.triangulateAndComputeE(actualE, values);
// get point
boost::optional<Point3> point = factor.point();
CHECK(point);
// calculate numerical derivative with triangulated point
Matrix expectedE = sigma * numericalDerivative11<Vector, Point3>(f, *point);
EXPECT(assert_equal(expectedE, actualE, 1e-7));
// Calculate using reprojectionError
SmartFactorP::Cameras::FBlocks F;
Matrix E;
Vector actualErrors = factor.unwhitenedError(cameras, *point, F, E);
EXPECT(assert_equal(expectedE, E, 1e-7));
EXPECT(assert_equal(Z_4x1, actualErrors, 1e-7));
// Calculate using computeJacobians
Vector b;
SmartFactorP::FBlocks Fs;
factor.computeJacobians(Fs, E, b, cameras, *point);
double actualError3 = b.squaredNorm();
EXPECT(assert_equal(expectedE, E, 1e-7));
EXPECT_DOUBLES_EQUAL(expectedError, actualError3, 1e-6);
}
/* *************************************************************************/
TEST( SmartProjectionFactorP, noisy ) {
using namespace vanillaPose;
// Project two landmarks into two cameras
Point2 pixelError(0.2, 0.2);
Point2 level_uv = level_camera.project(landmark1) + pixelError;
Point2 level_uv_right = level_camera_right.project(landmark1);
Values values;
values.insert(x1, cam1.pose());
Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI / 10, 0., -M_PI / 10),
Point3(0.5, 0.1, 0.3));
values.insert(x2, pose_right.compose(noise_pose));
SmartFactorP::shared_ptr factor(new SmartFactorP(model));
factor->add(level_uv, x1, sharedK);
factor->add(level_uv_right, x2, sharedK);
double actualError1 = factor->error(values);
SmartFactorP::shared_ptr factor2(new SmartFactorP(model));
Point2Vector measurements;
measurements.push_back(level_uv);
measurements.push_back(level_uv_right);
std::vector < boost::shared_ptr < Cal3_S2 >> sharedKs;
sharedKs.push_back(sharedK);
sharedKs.push_back(sharedK);
KeyVector views { x1, x2 };
factor2->add(measurements, views, sharedKs);
double actualError2 = factor2->error(values);
DOUBLES_EQUAL(actualError1, actualError2, 1e-7);
}
/* *************************************************************************/
TEST(SmartProjectionFactorP, smartFactorWithSensorBodyTransform) {
using namespace vanillaPose;
// create arbitrary body_T_sensor (transforms from sensor to body)
Pose3 body_T_sensor = Pose3(Rot3::Ypr(-M_PI / 2, 0., -M_PI / 2),
Point3(1, 1, 1));
// These are the poses we want to estimate, from camera measurements
const Pose3 sensor_T_body = body_T_sensor.inverse();
Pose3 wTb1 = cam1.pose() * sensor_T_body;
Pose3 wTb2 = cam2.pose() * sensor_T_body;
Pose3 wTb3 = cam3.pose() * sensor_T_body;
// three landmarks ~5 meters infront of camera
Point3 landmark1(5, 0.5, 1.2), landmark2(5, -0.5, 1.2), landmark3(5, 0, 3.0);
Point2Vector measurements_cam1, measurements_cam2, measurements_cam3;
// Project three landmarks into three cameras
projectToMultipleCameras(cam1, cam2, cam3, landmark1, measurements_cam1);
projectToMultipleCameras(cam1, cam2, cam3, landmark2, measurements_cam2);
projectToMultipleCameras(cam1, cam2, cam3, landmark3, measurements_cam3);
// Create smart factors
KeyVector views { x1, x2, x3 };
SmartProjectionParams params;
params.setRankTolerance(1.0);
params.setDegeneracyMode(IGNORE_DEGENERACY);
params.setEnableEPI(false);
std::vector < boost::shared_ptr < Cal3_S2 >> sharedKs;
sharedKs.push_back(sharedK);
sharedKs.push_back(sharedK);
sharedKs.push_back(sharedK);
std::vector<Pose3> body_T_sensors;
body_T_sensors.push_back(body_T_sensor);
body_T_sensors.push_back(body_T_sensor);
body_T_sensors.push_back(body_T_sensor);
SmartFactorP smartFactor1(model, params);
smartFactor1.add(measurements_cam1, views, sharedKs, body_T_sensors);
SmartFactorP smartFactor2(model, params);
smartFactor2.add(measurements_cam2, views, sharedKs, body_T_sensors);
SmartFactorP smartFactor3(model, params);
smartFactor3.add(measurements_cam3, views, sharedKs, body_T_sensors);
;
const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10);
// Put all factors in factor graph, adding priors
NonlinearFactorGraph graph;
graph.push_back(smartFactor1);
graph.push_back(smartFactor2);
graph.push_back(smartFactor3);
graph.addPrior(x1, wTb1, noisePrior);
graph.addPrior(x2, wTb2, noisePrior);
// Check errors at ground truth poses
Values gtValues;
gtValues.insert(x1, wTb1);
gtValues.insert(x2, wTb2);
gtValues.insert(x3, wTb3);
double actualError = graph.error(gtValues);
double expectedError = 0.0;
DOUBLES_EQUAL(expectedError, actualError, 1e-7)
Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI / 100, 0., -M_PI / 100),
Point3(0.1, 0.1, 0.1));
Values values;
values.insert(x1, wTb1);
values.insert(x2, wTb2);
// initialize third pose with some noise, we expect it to move back to
// original pose3
values.insert(x3, wTb3 * noise_pose);
LevenbergMarquardtParams lmParams;
Values result;
LevenbergMarquardtOptimizer optimizer(graph, values, lmParams);
result = optimizer.optimize();
// graph.print("graph\n");
EXPECT(assert_equal(wTb3, result.at<Pose3>(x3)));
}
/* *************************************************************************/
TEST( SmartProjectionFactorP, 3poses_smart_projection_factor ) {
using namespace vanillaPose2;
Point2Vector measurements_cam1, measurements_cam2, measurements_cam3;
// Project three landmarks into three cameras
projectToMultipleCameras(cam1, cam2, cam3, landmark1, measurements_cam1);
projectToMultipleCameras(cam1, cam2, cam3, landmark2, measurements_cam2);
projectToMultipleCameras(cam1, cam2, cam3, landmark3, measurements_cam3);
KeyVector views;
views.push_back(x1);
views.push_back(x2);
views.push_back(x3);
std::vector < boost::shared_ptr < Cal3_S2 >> sharedK2s;
sharedK2s.push_back(sharedK2);
sharedK2s.push_back(sharedK2);
sharedK2s.push_back(sharedK2);
SmartFactorP::shared_ptr smartFactor1(new SmartFactorP(model));
smartFactor1->add(measurements_cam1, views, sharedK2s);
SmartFactorP::shared_ptr smartFactor2(new SmartFactorP(model));
smartFactor2->add(measurements_cam2, views, sharedK2s);
SmartFactorP::shared_ptr smartFactor3(new SmartFactorP(model));
smartFactor3->add(measurements_cam3, views, sharedK2s);
const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10);
NonlinearFactorGraph graph;
graph.push_back(smartFactor1);
graph.push_back(smartFactor2);
graph.push_back(smartFactor3);
graph.addPrior(x1, cam1.pose(), noisePrior);
graph.addPrior(x2, cam2.pose(), noisePrior);
Values groundTruth;
groundTruth.insert(x1, cam1.pose());
groundTruth.insert(x2, cam2.pose());
groundTruth.insert(x3, cam3.pose());
DOUBLES_EQUAL(0, graph.error(groundTruth), 1e-9);
// Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI/10, 0., -M_PI/10), Point3(0.5,0.1,0.3)); // noise from regular projection factor test below
Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI / 100, 0., -M_PI / 100),
Point3(0.1, 0.1, 0.1)); // smaller noise
Values values;
values.insert(x1, cam1.pose());
values.insert(x2, cam2.pose());
// initialize third pose with some noise, we expect it to move back to original pose_above
values.insert(x3, pose_above * noise_pose);
EXPECT(
assert_equal(
Pose3(
Rot3(0, -0.0314107591, 0.99950656, -0.99950656, -0.0313952598,
-0.000986635786, 0.0314107591, -0.999013364, -0.0313952598),
Point3(0.1, -0.1, 1.9)),
values.at<Pose3>(x3)));
Values result;
LevenbergMarquardtOptimizer optimizer(graph, values, lmParams);
result = optimizer.optimize();
EXPECT(assert_equal(pose_above, result.at<Pose3>(x3), 1e-6));
}
/* *************************************************************************/
TEST( SmartProjectionFactorP, Factors ) {
using namespace vanillaPose;
// Default cameras for simple derivatives
Rot3 R;
static Cal3_S2::shared_ptr sharedK(new Cal3_S2(100, 100, 0, 0, 0));
Camera cam1(Pose3(R, Point3(0, 0, 0)), sharedK), cam2(
Pose3(R, Point3(1, 0, 0)), sharedK);
// one landmarks 1m in front of camera
Point3 landmark1(0, 0, 10);
Point2Vector measurements_cam1;
// Project 2 landmarks into 2 cameras
measurements_cam1.push_back(cam1.project(landmark1));
measurements_cam1.push_back(cam2.project(landmark1));
// Create smart factors
KeyVector views { x1, x2 };
std::vector < boost::shared_ptr < Cal3_S2 >> sharedKs;
sharedKs.push_back(sharedK);
sharedKs.push_back(sharedK);
SmartFactorP::shared_ptr smartFactor1 = boost::make_shared < SmartFactorP
> (model);
smartFactor1->add(measurements_cam1, views, sharedKs);
SmartFactorP::Cameras cameras;
cameras.push_back(cam1);
cameras.push_back(cam2);
// Make sure triangulation works
CHECK(smartFactor1->triangulateSafe(cameras));
CHECK(!smartFactor1->isDegenerate());
CHECK(!smartFactor1->isPointBehindCamera());
boost::optional<Point3> p = smartFactor1->point();
CHECK(p);
EXPECT(assert_equal(landmark1, *p));
VectorValues zeroDelta;
Vector6 delta;
delta.setZero();
zeroDelta.insert(x1, delta);
zeroDelta.insert(x2, delta);
VectorValues perturbedDelta;
delta.setOnes();
perturbedDelta.insert(x1, delta);
perturbedDelta.insert(x2, delta);
double expectedError = 2500;
// After eliminating the point, A1 and A2 contain 2-rank information on cameras:
Matrix16 A1, A2;
A1 << -10, 0, 0, 0, 1, 0;
A2 << 10, 0, 1, 0, -1, 0;
A1 *= 10. / sigma;
A2 *= 10. / sigma;
Matrix expectedInformation; // filled below
{
// createHessianFactor
Matrix66 G11 = 0.5 * A1.transpose() * A1;
Matrix66 G12 = 0.5 * A1.transpose() * A2;
Matrix66 G22 = 0.5 * A2.transpose() * A2;
Vector6 g1;
g1.setZero();
Vector6 g2;
g2.setZero();
double f = 0;
RegularHessianFactor<6> expected(x1, x2, G11, G12, g1, G22, g2, f);
expectedInformation = expected.information();
Values values;
values.insert(x1, cam1.pose());
values.insert(x2, cam2.pose());
boost::shared_ptr < RegularHessianFactor<6> > actual = smartFactor1
->createHessianFactor(values, 0.0);
EXPECT(assert_equal(expectedInformation, actual->information(), 1e-6));
EXPECT(assert_equal(expected, *actual, 1e-6));
EXPECT_DOUBLES_EQUAL(0, actual->error(zeroDelta), 1e-6);
EXPECT_DOUBLES_EQUAL(expectedError, actual->error(perturbedDelta), 1e-6);
}
}
/* *************************************************************************/
TEST( SmartProjectionFactorP, 3poses_iterative_smart_projection_factor ) {
using namespace vanillaPose;
KeyVector views { x1, x2, x3 };
Point2Vector measurements_cam1, measurements_cam2, measurements_cam3;
// Project three landmarks into three cameras
projectToMultipleCameras(cam1, cam2, cam3, landmark1, measurements_cam1);
projectToMultipleCameras(cam1, cam2, cam3, landmark2, measurements_cam2);
projectToMultipleCameras(cam1, cam2, cam3, landmark3, measurements_cam3);
std::vector < boost::shared_ptr < Cal3_S2 >> sharedKs;
sharedKs.push_back(sharedK);
sharedKs.push_back(sharedK);
sharedKs.push_back(sharedK);
SmartFactorP::shared_ptr smartFactor1(new SmartFactorP(model));
smartFactor1->add(measurements_cam1, views, sharedKs);
SmartFactorP::shared_ptr smartFactor2(new SmartFactorP(model));
smartFactor2->add(measurements_cam2, views, sharedKs);
SmartFactorP::shared_ptr smartFactor3(new SmartFactorP(model));
smartFactor3->add(measurements_cam3, views, sharedKs);
const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10);
NonlinearFactorGraph graph;
graph.push_back(smartFactor1);
graph.push_back(smartFactor2);
graph.push_back(smartFactor3);
graph.addPrior(x1, cam1.pose(), noisePrior);
graph.addPrior(x2, cam2.pose(), noisePrior);
// Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI/10, 0., -M_PI/10), Point3(0.5,0.1,0.3)); // noise from regular projection factor test below
Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI / 100, 0., -M_PI / 100),
Point3(0.1, 0.1, 0.1)); // smaller noise
Values values;
values.insert(x1, cam1.pose());
values.insert(x2, cam2.pose());
// initialize third pose with some noise, we expect it to move back to original pose_above
values.insert(x3, pose_above * noise_pose);
EXPECT(
assert_equal(
Pose3(
Rot3(1.11022302e-16, -0.0314107591, 0.99950656, -0.99950656,
-0.0313952598, -0.000986635786, 0.0314107591, -0.999013364,
-0.0313952598),
Point3(0.1, -0.1, 1.9)),
values.at<Pose3>(x3)));
Values result;
LevenbergMarquardtOptimizer optimizer(graph, values, lmParams);
result = optimizer.optimize();
EXPECT(assert_equal(pose_above, result.at<Pose3>(x3), 1e-7));
}
/* *************************************************************************/
TEST( SmartProjectionFactorP, landmarkDistance ) {
using namespace vanillaPose;
double excludeLandmarksFutherThanDist = 2;
KeyVector views { x1, x2, x3 };
Point2Vector measurements_cam1, measurements_cam2, measurements_cam3;
// Project three landmarks into three cameras
projectToMultipleCameras(cam1, cam2, cam3, landmark1, measurements_cam1);
projectToMultipleCameras(cam1, cam2, cam3, landmark2, measurements_cam2);
projectToMultipleCameras(cam1, cam2, cam3, landmark3, measurements_cam3);
std::vector < boost::shared_ptr < Cal3_S2 >> sharedKs;
sharedKs.push_back(sharedK);
sharedKs.push_back(sharedK);
sharedKs.push_back(sharedK);
SmartProjectionParams params;
params.setRankTolerance(1.0);
params.setLinearizationMode(gtsam::JACOBIAN_SVD);
params.setDegeneracyMode(gtsam::IGNORE_DEGENERACY);
params.setLandmarkDistanceThreshold(excludeLandmarksFutherThanDist);
params.setEnableEPI(false);
SmartFactorP::shared_ptr smartFactor1(new SmartFactorP(model, params));
smartFactor1->add(measurements_cam1, views, sharedKs);
SmartFactorP::shared_ptr smartFactor2(new SmartFactorP(model, params));
smartFactor2->add(measurements_cam2, views, sharedKs);
SmartFactorP::shared_ptr smartFactor3(new SmartFactorP(model, params));
smartFactor3->add(measurements_cam3, views, sharedKs);
const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10);
NonlinearFactorGraph graph;
graph.push_back(smartFactor1);
graph.push_back(smartFactor2);
graph.push_back(smartFactor3);
graph.addPrior(x1, cam1.pose(), noisePrior);
graph.addPrior(x2, cam2.pose(), noisePrior);
// Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI/10, 0., -M_PI/10), Point3(0.5,0.1,0.3)); // noise from regular projection factor test below
Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI / 100, 0., -M_PI / 100),
Point3(0.1, 0.1, 0.1)); // smaller noise
Values values;
values.insert(x1, cam1.pose());
values.insert(x2, cam2.pose());
values.insert(x3, pose_above * noise_pose);
// All factors are disabled and pose should remain where it is
Values result;
LevenbergMarquardtOptimizer optimizer(graph, values, lmParams);
result = optimizer.optimize();
EXPECT(assert_equal(values.at<Pose3>(x3), result.at<Pose3>(x3)));
}
/* *************************************************************************/
TEST( SmartProjectionFactorP, dynamicOutlierRejection ) {
using namespace vanillaPose;
double excludeLandmarksFutherThanDist = 1e10;
double dynamicOutlierRejectionThreshold = 1; // max 1 pixel of average reprojection error
KeyVector views { x1, x2, x3 };
std::vector < boost::shared_ptr < Cal3_S2 >> sharedKs;
sharedKs.push_back(sharedK);
sharedKs.push_back(sharedK);
sharedKs.push_back(sharedK);
// add fourth landmark
Point3 landmark4(5, -0.5, 1);
Point2Vector measurements_cam1, measurements_cam2, measurements_cam3,
measurements_cam4;
// Project 4 landmarks into three cameras
projectToMultipleCameras(cam1, cam2, cam3, landmark1, measurements_cam1);
projectToMultipleCameras(cam1, cam2, cam3, landmark2, measurements_cam2);
projectToMultipleCameras(cam1, cam2, cam3, landmark3, measurements_cam3);
projectToMultipleCameras(cam1, cam2, cam3, landmark4, measurements_cam4);
measurements_cam4.at(0) = measurements_cam4.at(0) + Point2(10, 10); // add outlier
SmartProjectionParams params;
params.setLinearizationMode(gtsam::HESSIAN);
params.setDegeneracyMode(gtsam::ZERO_ON_DEGENERACY);
params.setLandmarkDistanceThreshold(excludeLandmarksFutherThanDist);
params.setDynamicOutlierRejectionThreshold(dynamicOutlierRejectionThreshold);
SmartFactorP::shared_ptr smartFactor1(new SmartFactorP(model, params));
smartFactor1->add(measurements_cam1, views, sharedKs);
SmartFactorP::shared_ptr smartFactor2(new SmartFactorP(model, params));
smartFactor2->add(measurements_cam2, views, sharedKs);
SmartFactorP::shared_ptr smartFactor3(new SmartFactorP(model, params));
smartFactor3->add(measurements_cam3, views, sharedKs);
SmartFactorP::shared_ptr smartFactor4(new SmartFactorP(model, params));
smartFactor4->add(measurements_cam4, views, sharedKs);
const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10);
NonlinearFactorGraph graph;
graph.push_back(smartFactor1);
graph.push_back(smartFactor2);
graph.push_back(smartFactor3);
graph.push_back(smartFactor4);
graph.addPrior(x1, cam1.pose(), noisePrior);
graph.addPrior(x2, cam2.pose(), noisePrior);
Values values;
values.insert(x1, cam1.pose());
values.insert(x2, cam2.pose());
values.insert(x3, cam3.pose());
// All factors are disabled and pose should remain where it is
Values result;
LevenbergMarquardtOptimizer optimizer(graph, values, lmParams);
result = optimizer.optimize();
EXPECT(assert_equal(cam3.pose(), result.at<Pose3>(x3)));
}
/* *************************************************************************/
TEST( SmartProjectionFactorP, CheckHessian) {
KeyVector views { x1, x2, x3 };
using namespace vanillaPose;
// Two slightly different cameras
Pose3 pose2 = level_pose
* Pose3(Rot3::RzRyRx(-0.05, 0.0, -0.05), Point3(0, 0, 0));
Pose3 pose3 = pose2 * Pose3(Rot3::RzRyRx(-0.05, 0.0, -0.05), Point3(0, 0, 0));
Camera cam2(pose2, sharedK);
Camera cam3(pose3, sharedK);
Point2Vector measurements_cam1, measurements_cam2, measurements_cam3;
// Project three landmarks into three cameras
projectToMultipleCameras(cam1, cam2, cam3, landmark1, measurements_cam1);
projectToMultipleCameras(cam1, cam2, cam3, landmark2, measurements_cam2);
projectToMultipleCameras(cam1, cam2, cam3, landmark3, measurements_cam3);
std::vector < boost::shared_ptr < Cal3_S2 >> sharedKs;
sharedKs.push_back(sharedK);
sharedKs.push_back(sharedK);
sharedKs.push_back(sharedK);
SmartProjectionParams params;
params.setRankTolerance(10);
params.setDegeneracyMode(gtsam::ZERO_ON_DEGENERACY);
SmartFactorP::shared_ptr smartFactor1(new SmartFactorP(model, params)); // HESSIAN, by default
smartFactor1->add(measurements_cam1, views, sharedKs);
SmartFactorP::shared_ptr smartFactor2(new SmartFactorP(model, params)); // HESSIAN, by default
smartFactor2->add(measurements_cam2, views, sharedKs);
SmartFactorP::shared_ptr smartFactor3(new SmartFactorP(model, params)); // HESSIAN, by default
smartFactor3->add(measurements_cam3, views, sharedKs);
NonlinearFactorGraph graph;
graph.push_back(smartFactor1);
graph.push_back(smartFactor2);
graph.push_back(smartFactor3);
// Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI/10, 0., -M_PI/10), Point3(0.5,0.1,0.3)); // noise from regular projection factor test below
Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI / 100, 0., -M_PI / 100),
Point3(0.1, 0.1, 0.1)); // smaller noise
Values values;
values.insert(x1, cam1.pose());
values.insert(x2, cam2.pose());
// initialize third pose with some noise, we expect it to move back to original pose_above
values.insert(x3, pose3 * noise_pose);
EXPECT(
assert_equal(
Pose3(
Rot3(0.00563056869, -0.130848107, 0.991386438, -0.991390265,
-0.130426831, -0.0115837907, 0.130819108, -0.98278564,
-0.130455917),
Point3(0.0897734171, -0.110201006, 0.901022872)),
values.at<Pose3>(x3)));
boost::shared_ptr<GaussianFactor> factor1 = smartFactor1->linearize(values);
boost::shared_ptr<GaussianFactor> factor2 = smartFactor2->linearize(values);
boost::shared_ptr<GaussianFactor> factor3 = smartFactor3->linearize(values);
Matrix CumulativeInformation = factor1->information() + factor2->information()
+ factor3->information();
boost::shared_ptr<GaussianFactorGraph> GaussianGraph = graph.linearize(
values);
Matrix GraphInformation = GaussianGraph->hessian().first;
// Check Hessian
EXPECT(assert_equal(GraphInformation, CumulativeInformation, 1e-6));
Matrix AugInformationMatrix = factor1->augmentedInformation()
+ factor2->augmentedInformation() + factor3->augmentedInformation();
// Check Information vector
Vector InfoVector = AugInformationMatrix.block(0, 18, 18, 1); // 18x18 Hessian + information vector
// Check Hessian
EXPECT(assert_equal(InfoVector, GaussianGraph->hessian().second, 1e-6));
}
/* *************************************************************************/
TEST( SmartProjectionFactorP, Hessian ) {
using namespace vanillaPose2;
KeyVector views { x1, x2 };
// Project three landmarks into 2 cameras
Point2 cam1_uv1 = cam1.project(landmark1);
Point2 cam2_uv1 = cam2.project(landmark1);
Point2Vector measurements_cam1;
measurements_cam1.push_back(cam1_uv1);
measurements_cam1.push_back(cam2_uv1);
std::vector < boost::shared_ptr < Cal3_S2 >> sharedK2s;
sharedK2s.push_back(sharedK2);
sharedK2s.push_back(sharedK2);
SmartFactorP::shared_ptr smartFactor1(new SmartFactorP(model));
smartFactor1->add(measurements_cam1, views, sharedK2s);
Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI / 10, 0., -M_PI / 10),
Point3(0.5, 0.1, 0.3));
Values values;
values.insert(x1, cam1.pose());
values.insert(x2, cam2.pose());
boost::shared_ptr<GaussianFactor> factor = smartFactor1->linearize(values);
// compute triangulation from linearization point
// compute reprojection errors (sum squared)
// compare with factor.info(): the bottom right element is the squared sum of the reprojection errors (normalized by the covariance)
// check that it is correctly scaled when using noiseProjection = [1/4 0; 0 1/4]
}
/* ************************************************************************* */
TEST( SmartProjectionFactorP, ConstructorWithCal3Bundler) {
using namespace bundlerPose;
SmartProjectionParams params;
params.setDegeneracyMode(gtsam::ZERO_ON_DEGENERACY);
SmartFactorP factor(model, params);
factor.add(measurement1, x1, sharedBundlerK);
}
/* *************************************************************************/
TEST( SmartProjectionFactorP, Cal3Bundler ) {
using namespace bundlerPose;
// three landmarks ~5 meters in front of camera
Point3 landmark3(3, 0, 3.0);
Point2Vector measurements_cam1, measurements_cam2, measurements_cam3;
// Project three landmarks into three cameras
projectToMultipleCameras(cam1, cam2, cam3, landmark1, measurements_cam1);
projectToMultipleCameras(cam1, cam2, cam3, landmark2, measurements_cam2);
projectToMultipleCameras(cam1, cam2, cam3, landmark3, measurements_cam3);
KeyVector views { x1, x2, x3 };
std::vector < boost::shared_ptr < Cal3Bundler >> sharedBundlerKs;
sharedBundlerKs.push_back(sharedBundlerK);
sharedBundlerKs.push_back(sharedBundlerK);
sharedBundlerKs.push_back(sharedBundlerK);
SmartFactorP::shared_ptr smartFactor1(new SmartFactorP(model));
smartFactor1->add(measurements_cam1, views, sharedBundlerKs);
SmartFactorP::shared_ptr smartFactor2(new SmartFactorP(model));
smartFactor2->add(measurements_cam2, views, sharedBundlerKs);
SmartFactorP::shared_ptr smartFactor3(new SmartFactorP(model));
smartFactor3->add(measurements_cam3, views, sharedBundlerKs);
const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10);
NonlinearFactorGraph graph;
graph.push_back(smartFactor1);
graph.push_back(smartFactor2);
graph.push_back(smartFactor3);
graph.addPrior(x1, cam1.pose(), noisePrior);
graph.addPrior(x2, cam2.pose(), noisePrior);
// Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI/10, 0., -M_PI/10), Point3(0.5,0.1,0.3)); // noise from regular projection factor test below
Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI / 100, 0., -M_PI / 100),
Point3(0.1, 0.1, 0.1)); // smaller noise
Values values;
values.insert(x1, cam1.pose());
values.insert(x2, cam2.pose());
// initialize third pose with some noise, we expect it to move back to original pose_above
values.insert(x3, pose_above * noise_pose);
EXPECT(
assert_equal(
Pose3(
Rot3(0, -0.0314107591, 0.99950656, -0.99950656, -0.0313952598,
-0.000986635786, 0.0314107591, -0.999013364, -0.0313952598),
Point3(0.1, -0.1, 1.9)),
values.at<Pose3>(x3)));
Values result;
LevenbergMarquardtOptimizer optimizer(graph, values, lmParams);
result = optimizer.optimize();
EXPECT(assert_equal(cam3.pose(), result.at<Pose3>(x3), 1e-6));
}
#include <gtsam/slam/ProjectionFactor.h>
typedef GenericProjectionFactor<Pose3, Point3> TestProjectionFactor;
static Symbol l0('L', 0);
/* *************************************************************************/
TEST( SmartProjectionFactorP, hessianComparedToProjFactors_measurementsFromSamePose) {
// in this test we make sure the fact works even if we have multiple pixel measurements of the same landmark
// at a single pose, a setup that occurs in multi-camera systems
using namespace vanillaPose;
Point2Vector measurements_lmk1;
// Project three landmarks into three cameras
projectToMultipleCameras(cam1, cam2, cam3, landmark1, measurements_lmk1);
// create redundant measurements:
Camera::MeasurementVector measurements_lmk1_redundant = measurements_lmk1;
measurements_lmk1_redundant.push_back(measurements_lmk1.at(0)); // we readd the first measurement
// create inputs
std::vector<Key> keys;
keys.push_back(x1);
keys.push_back(x2);
keys.push_back(x3);
keys.push_back(x1);
std::vector < boost::shared_ptr < Cal3_S2 >> sharedKs;
sharedKs.push_back(sharedK);
sharedKs.push_back(sharedK);
sharedKs.push_back(sharedK);
sharedKs.push_back(sharedK);
SmartFactorP::shared_ptr smartFactor1(new SmartFactorP(model));
smartFactor1->add(measurements_lmk1_redundant, keys, sharedKs);
Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI / 100, 0., -M_PI / 100),
Point3(0.1, 0.1, 0.1)); // smaller noise
Values values;
values.insert(x1, level_pose);
values.insert(x2, pose_right);
// initialize third pose with some noise to get a nontrivial linearization point
values.insert(x3, pose_above * noise_pose);
EXPECT( // check that the pose is actually noisy
assert_equal( Pose3( Rot3(0, -0.0314107591, 0.99950656, -0.99950656, -0.0313952598, -0.000986635786, 0.0314107591, -0.999013364, -0.0313952598), Point3(0.1, -0.1, 1.9)), values.at<Pose3>(x3)));
// linearization point for the poses
Pose3 pose1 = level_pose;
Pose3 pose2 = pose_right;
Pose3 pose3 = pose_above * noise_pose;
// ==== check Hessian of smartFactor1 =====
// -- compute actual Hessian
boost::shared_ptr<GaussianFactor> linearfactor1 = smartFactor1->linearize(
values);
Matrix actualHessian = linearfactor1->information();
// -- compute expected Hessian from manual Schur complement from Jacobians
// linearization point for the 3D point
smartFactor1->triangulateSafe(smartFactor1->cameras(values));
TriangulationResult point = smartFactor1->point();
EXPECT(point.valid()); // check triangulated point is valid
// Use standard ProjectionFactor factor to calculate the Jacobians
Matrix F = Matrix::Zero(2 * 4, 6 * 3);
Matrix E = Matrix::Zero(2 * 4, 3);
Vector b = Vector::Zero(2 * 4);
// create projection factors rolling shutter
TestProjectionFactor factor11(measurements_lmk1_redundant[0], model, x1, l0,
sharedK);
Matrix HPoseActual, HEActual;
// note: b is minus the reprojection error, cf the smart factor jacobian computation
b.segment<2>(0) = -factor11.evaluateError(pose1, *point, HPoseActual,
HEActual);
F.block<2, 6>(0, 0) = HPoseActual;
E.block<2, 3>(0, 0) = HEActual;
TestProjectionFactor factor12(measurements_lmk1_redundant[1], model, x2, l0,
sharedK);
b.segment<2>(2) = -factor12.evaluateError(pose2, *point, HPoseActual,
HEActual);
F.block<2, 6>(2, 6) = HPoseActual;
E.block<2, 3>(2, 0) = HEActual;
TestProjectionFactor factor13(measurements_lmk1_redundant[2], model, x3, l0,
sharedK);
b.segment<2>(4) = -factor13.evaluateError(pose3, *point, HPoseActual,
HEActual);
F.block<2, 6>(4, 12) = HPoseActual;
E.block<2, 3>(4, 0) = HEActual;
TestProjectionFactor factor14(measurements_lmk1_redundant[3], model, x1, l0,
sharedK);
b.segment<2>(6) = -factor11.evaluateError(pose1, *point, HPoseActual,
HEActual);
F.block<2, 6>(6, 0) = HPoseActual;
E.block<2, 3>(6, 0) = HEActual;
// whiten
F = (1 / sigma) * F;
E = (1 / sigma) * E;
b = (1 / sigma) * b;
//* G = F' * F - F' * E * P * E' * F
Matrix P = (E.transpose() * E).inverse();
Matrix expectedHessian = F.transpose() * F
- (F.transpose() * E * P * E.transpose() * F);
EXPECT(assert_equal(expectedHessian, actualHessian, 1e-6));
// ==== check Information vector of smartFactor1 =====
GaussianFactorGraph gfg;
gfg.add(linearfactor1);
Matrix actualHessian_v2 = gfg.hessian().first;
EXPECT(assert_equal(actualHessian_v2, actualHessian, 1e-6)); // sanity check on hessian
// -- compute actual information vector
Vector actualInfoVector = gfg.hessian().second;
// -- compute expected information vector from manual Schur complement from Jacobians
//* g = F' * (b - E * P * E' * b)
Vector expectedInfoVector = F.transpose() * (b - E * P * E.transpose() * b);
EXPECT(assert_equal(expectedInfoVector, actualInfoVector, 1e-6));
// ==== check error of smartFactor1 (again) =====
NonlinearFactorGraph nfg_projFactors;
nfg_projFactors.add(factor11);
nfg_projFactors.add(factor12);
nfg_projFactors.add(factor13);
nfg_projFactors.add(factor14);
values.insert(l0, *point);
double actualError = smartFactor1->error(values);
double expectedError = nfg_projFactors.error(values);
EXPECT_DOUBLES_EQUAL(expectedError, actualError, 1e-7);
}
/* *************************************************************************/
TEST( SmartProjectionFactorP, optimization_3poses_measurementsFromSamePose ) {
using namespace vanillaPose;
Point2Vector measurements_lmk1, measurements_lmk2, measurements_lmk3;
// Project three landmarks into three cameras
projectToMultipleCameras(cam1, cam2, cam3, landmark1, measurements_lmk1);
projectToMultipleCameras(cam1, cam2, cam3, landmark2, measurements_lmk2);
projectToMultipleCameras(cam1, cam2, cam3, landmark3, measurements_lmk3);
// create inputs
std::vector<Key> keys;
keys.push_back(x1);
keys.push_back(x2);
keys.push_back(x3);
std::vector < boost::shared_ptr < Cal3_S2 >> sharedKs;
sharedKs.push_back(sharedK);
sharedKs.push_back(sharedK);
sharedKs.push_back(sharedK);
// For first factor, we create redundant measurement (taken by the same keys as factor 1, to
// make sure the redundancy in the keys does not create problems)
Camera::MeasurementVector& measurements_lmk1_redundant = measurements_lmk1;
measurements_lmk1_redundant.push_back(measurements_lmk1.at(0)); // we readd the first measurement
std::vector<Key> keys_redundant = keys;
keys_redundant.push_back(keys.at(0)); // we readd the first key
std::vector < boost::shared_ptr < Cal3_S2 >> sharedKs_redundant = sharedKs;
sharedKs_redundant.push_back(sharedK);// we readd the first calibration
SmartFactorP::shared_ptr smartFactor1(new SmartFactorP(model));
smartFactor1->add(measurements_lmk1_redundant, keys_redundant, sharedKs_redundant);
SmartFactorP::shared_ptr smartFactor2(new SmartFactorP(model));
smartFactor2->add(measurements_lmk2, keys, sharedKs);
SmartFactorP::shared_ptr smartFactor3(new SmartFactorP(model));
smartFactor3->add(measurements_lmk3, keys, sharedKs);
const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10);
NonlinearFactorGraph graph;
graph.push_back(smartFactor1);
graph.push_back(smartFactor2);
graph.push_back(smartFactor3);
graph.addPrior(x1, level_pose, noisePrior);
graph.addPrior(x2, pose_right, noisePrior);
Values groundTruth;
groundTruth.insert(x1, level_pose);
groundTruth.insert(x2, pose_right);
groundTruth.insert(x3, pose_above);
DOUBLES_EQUAL(0, graph.error(groundTruth), 1e-9);
// Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI/10, 0., -M_PI/10), Point3(0.5,0.1,0.3)); // noise from regular projection factor test below
Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI / 100, 0., -M_PI / 100),
Point3(0.1, 0.1, 0.1)); // smaller noise
Values values;
values.insert(x1, level_pose);
values.insert(x2, pose_right);
// initialize third pose with some noise, we expect it to move back to original pose_above
values.insert(x3, pose_above * noise_pose);
EXPECT( // check that the pose is actually noisy
assert_equal(
Pose3(
Rot3(0, -0.0314107591, 0.99950656, -0.99950656, -0.0313952598,
-0.000986635786, 0.0314107591, -0.999013364, -0.0313952598),
Point3(0.1, -0.1, 1.9)), values.at<Pose3>(x3)));
Values result;
LevenbergMarquardtOptimizer optimizer(graph, values, lmParams);
result = optimizer.optimize();
EXPECT(assert_equal(pose_above, result.at<Pose3>(x3), 1e-5));
}
#ifndef DISABLE_TIMING
#include <gtsam/base/timing.h>
// this factor is actually slightly faster (but comparable) to original SmartProjectionPoseFactor
//-Total: 0 CPU (0 times, 0 wall, 0.01 children, min: 0 max: 0)
//| -SmartFactorP LINEARIZE: 0 CPU (1000 times, 0.005481 wall, 0 children, min: 0 max: 0)
//| -SmartPoseFactor LINEARIZE: 0.01 CPU (1000 times, 0.007318 wall, 0.01 children, min: 0 max: 0)
/* *************************************************************************/
TEST( SmartProjectionFactorP, timing ) {
using namespace vanillaPose;
// Default cameras for simple derivatives
static Cal3_S2::shared_ptr sharedKSimple(new Cal3_S2(100, 100, 0, 0, 0));
Rot3 R = Rot3::identity();
Pose3 pose1 = Pose3(R, Point3(0, 0, 0));
Pose3 pose2 = Pose3(R, Point3(1, 0, 0));
Camera cam1(pose1, sharedKSimple), cam2(pose2, sharedKSimple);
Pose3 body_P_sensorId = Pose3::identity();
// one landmarks 1m in front of camera
Point3 landmark1(0, 0, 10);
Point2Vector measurements_lmk1;
// Project 2 landmarks into 2 cameras
measurements_lmk1.push_back(cam1.project(landmark1));
measurements_lmk1.push_back(cam2.project(landmark1));
size_t nrTests = 1000;
for(size_t i = 0; i<nrTests; i++){
SmartFactorP::shared_ptr smartFactorP(new SmartFactorP(model));
smartFactorP->add(measurements_lmk1[0], x1, sharedKSimple, body_P_sensorId);
smartFactorP->add(measurements_lmk1[1], x1, sharedKSimple, body_P_sensorId);
Values values;
values.insert(x1, pose1);
values.insert(x2, pose2);
gttic_(SmartFactorP_LINEARIZE);
smartFactorP->linearize(values);
gttoc_(SmartFactorP_LINEARIZE);
}
for(size_t i = 0; i<nrTests; i++){
SmartFactor::shared_ptr smartFactor(new SmartFactor(model, sharedKSimple));
smartFactor->add(measurements_lmk1[0], x1);
smartFactor->add(measurements_lmk1[1], x2);
Values values;
values.insert(x1, pose1);
values.insert(x2, pose2);
gttic_(SmartPoseFactor_LINEARIZE);
smartFactor->linearize(values);
gttoc_(SmartPoseFactor_LINEARIZE);
}
tictoc_print_();
}
#endif
/* *************************************************************************/
TEST( SmartProjectionFactorP, optimization_3poses_sphericalCamera ) {
using namespace sphericalCamera;
Camera::MeasurementVector measurements_lmk1, measurements_lmk2, measurements_lmk3;
// Project three landmarks into three cameras
projectToMultipleCameras<Camera>(cam1, cam2, cam3, landmark1, measurements_lmk1);
projectToMultipleCameras<Camera>(cam1, cam2, cam3, landmark2, measurements_lmk2);
projectToMultipleCameras<Camera>(cam1, cam2, cam3, landmark3, measurements_lmk3);
// create inputs
std::vector<Key> keys;
keys.push_back(x1);
keys.push_back(x2);
keys.push_back(x3);
std::vector<EmptyCal::shared_ptr> emptyKs;
emptyKs.push_back(emptyK);
emptyKs.push_back(emptyK);
emptyKs.push_back(emptyK);
SmartProjectionParams params;
params.setRankTolerance(0.01);
SmartFactorP::shared_ptr smartFactor1(new SmartFactorP(model,params));
smartFactor1->add(measurements_lmk1, keys, emptyKs);
SmartFactorP::shared_ptr smartFactor2(new SmartFactorP(model,params));
smartFactor2->add(measurements_lmk2, keys, emptyKs);
SmartFactorP::shared_ptr smartFactor3(new SmartFactorP(model,params));
smartFactor3->add(measurements_lmk3, keys, emptyKs);
const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10);
NonlinearFactorGraph graph;
graph.push_back(smartFactor1);
graph.push_back(smartFactor2);
graph.push_back(smartFactor3);
graph.addPrior(x1, level_pose, noisePrior);
graph.addPrior(x2, pose_right, noisePrior);
Values groundTruth;
groundTruth.insert(x1, level_pose);
groundTruth.insert(x2, pose_right);
groundTruth.insert(x3, pose_above);
DOUBLES_EQUAL(0, graph.error(groundTruth), 1e-9);
// Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI/10, 0., -M_PI/10), Point3(0.5,0.1,0.3)); // noise from regular projection factor test below
Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI / 100, 0., -M_PI / 100),
Point3(0.1, 0.1, 0.1)); // smaller noise
Values values;
values.insert(x1, level_pose);
values.insert(x2, pose_right);
// initialize third pose with some noise, we expect it to move back to original pose_above
values.insert(x3, pose_above * noise_pose);
EXPECT( // check that the pose is actually noisy
assert_equal(
Pose3(
Rot3(0, -0.0314107591, 0.99950656, -0.99950656, -0.0313952598,
-0.000986635786, 0.0314107591, -0.999013364, -0.0313952598),
Point3(0.1, -0.1, 1.9)), values.at<Pose3>(x3)));
DOUBLES_EQUAL(0.1584588987292, graph.error(values), 1e-9);
Values result;
LevenbergMarquardtOptimizer optimizer(graph, values, lmParams);
result = optimizer.optimize();
EXPECT(assert_equal(pose_above, result.at<Pose3>(x3), 1e-5));
}
#ifndef DISABLE_TIMING
#include <gtsam/base/timing.h>
// using spherical camera is slightly slower (but comparable) to PinholePose<Cal3_S2>
//| -SmartFactorP spherical LINEARIZE: 0.01 CPU (1000 times, 0.00752 wall, 0.01 children, min: 0 max: 0)
//| -SmartFactorP pinhole LINEARIZE: 0 CPU (1000 times, 0.00523 wall, 0 children, min: 0 max: 0)
/* *************************************************************************/
TEST( SmartProjectionFactorP, timing_sphericalCamera ) {
// create common data
Rot3 R = Rot3::identity();
Pose3 pose1 = Pose3(R, Point3(0, 0, 0));
Pose3 pose2 = Pose3(R, Point3(1, 0, 0));
Pose3 body_P_sensorId = Pose3::identity();
Point3 landmark1(0, 0, 10);
// create spherical data
EmptyCal::shared_ptr emptyK;
SphericalCamera cam1_sphere(pose1, emptyK), cam2_sphere(pose2, emptyK);
// Project 2 landmarks into 2 cameras
std::vector<Unit3> measurements_lmk1_sphere;
measurements_lmk1_sphere.push_back(cam1_sphere.project(landmark1));
measurements_lmk1_sphere.push_back(cam2_sphere.project(landmark1));
// create Cal3_S2 data
static Cal3_S2::shared_ptr sharedKSimple(new Cal3_S2(100, 100, 0, 0, 0));
PinholePose<Cal3_S2> cam1(pose1, sharedKSimple), cam2(pose2, sharedKSimple);
// Project 2 landmarks into 2 cameras
std::vector<Point2> measurements_lmk1;
measurements_lmk1.push_back(cam1.project(landmark1));
measurements_lmk1.push_back(cam2.project(landmark1));
size_t nrTests = 1000;
for(size_t i = 0; i<nrTests; i++){
SmartProjectionFactorP<SphericalCamera>::shared_ptr smartFactorP(new SmartProjectionFactorP<SphericalCamera>(model));
smartFactorP->add(measurements_lmk1_sphere[0], x1, emptyK, body_P_sensorId);
smartFactorP->add(measurements_lmk1_sphere[1], x1, emptyK, body_P_sensorId);
Values values;
values.insert(x1, pose1);
values.insert(x2, pose2);
gttic_(SmartFactorP_spherical_LINEARIZE);
smartFactorP->linearize(values);
gttoc_(SmartFactorP_spherical_LINEARIZE);
}
for(size_t i = 0; i<nrTests; i++){
SmartProjectionFactorP< PinholePose<Cal3_S2> >::shared_ptr smartFactorP2(new SmartProjectionFactorP< PinholePose<Cal3_S2> >(model));
smartFactorP2->add(measurements_lmk1[0], x1, sharedKSimple, body_P_sensorId);
smartFactorP2->add(measurements_lmk1[1], x1, sharedKSimple, body_P_sensorId);
Values values;
values.insert(x1, pose1);
values.insert(x2, pose2);
gttic_(SmartFactorP_pinhole_LINEARIZE);
smartFactorP2->linearize(values);
gttoc_(SmartFactorP_pinhole_LINEARIZE);
}
tictoc_print_();
}
#endif
/* ************************************************************************* */
BOOST_CLASS_EXPORT_GUID(gtsam::noiseModel::Constrained, "gtsam_noiseModel_Constrained");
BOOST_CLASS_EXPORT_GUID(gtsam::noiseModel::Diagonal, "gtsam_noiseModel_Diagonal");
BOOST_CLASS_EXPORT_GUID(gtsam::noiseModel::Gaussian, "gtsam_noiseModel_Gaussian");
BOOST_CLASS_EXPORT_GUID(gtsam::noiseModel::Unit, "gtsam_noiseModel_Unit");
BOOST_CLASS_EXPORT_GUID(gtsam::noiseModel::Isotropic, "gtsam_noiseModel_Isotropic");
BOOST_CLASS_EXPORT_GUID(gtsam::SharedNoiseModel, "gtsam_SharedNoiseModel");
BOOST_CLASS_EXPORT_GUID(gtsam::SharedDiagonal, "gtsam_SharedDiagonal");
TEST(SmartProjectionFactorP, serialize) {
using namespace vanillaPose;
using namespace gtsam::serializationTestHelpers;
SmartProjectionParams params;
params.setRankTolerance(rankTol);
SmartFactorP factor(model, params);
EXPECT(equalsObj(factor));
EXPECT(equalsXML(factor));
EXPECT(equalsBinary(factor));
}
// SERIALIZATION TEST FAILS: to be fixed
//TEST(SmartProjectionFactorP, serialize2) {
// using namespace vanillaPose;
// using namespace gtsam::serializationTestHelpers;
// SmartProjectionParams params;
// params.setRankTolerance(rankTol);
// SmartFactorP factor(model, params);
//
// // insert some measurements
// KeyVector key_view;
// Point2Vector meas_view;
// std::vector<boost::shared_ptr<Cal3_S2>> sharedKs;
//
//
// key_view.push_back(Symbol('x', 1));
// meas_view.push_back(Point2(10, 10));
// sharedKs.push_back(sharedK);
// factor.add(meas_view, key_view, sharedKs);
//
// EXPECT(equalsObj(factor));
// EXPECT(equalsXML(factor));
// EXPECT(equalsBinary(factor));
//}
/* ************************************************************************* */
int main() {
TestResult tr;
return TestRegistry::runAllTests(tr);
}
/* ************************************************************************* */