70 lines
		
	
	
		
			2.0 KiB
		
	
	
	
		
			C++
		
	
	
			
		
		
	
	
			70 lines
		
	
	
		
			2.0 KiB
		
	
	
	
		
			C++
		
	
	
| /* ----------------------------------------------------------------------------
 | |
| 
 | |
|  * GTSAM Copyright 2010, Georgia Tech Research Corporation, 
 | |
|  * Atlanta, Georgia 30332-0415
 | |
|  * All Rights Reserved
 | |
|  * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
 | |
| 
 | |
|  * See LICENSE for the license information
 | |
| 
 | |
|  * -------------------------------------------------------------------------- */
 | |
| 
 | |
| /**
 | |
|  * @file    testSymbolicBayesNet.cpp
 | |
|  * @brief   Unit tests for a symbolic Bayes chain
 | |
|  * @author  Frank Dellaert
 | |
|  */
 | |
| 
 | |
| #include <boost/assign/list_inserter.hpp> // for 'insert()'
 | |
| #include <boost/assign/std/list.hpp> // for operator +=
 | |
| using namespace boost::assign;
 | |
| 
 | |
| #include <CppUnitLite/TestHarness.h>
 | |
| 
 | |
| #define GTSAM_MAGIC_KEY
 | |
| 
 | |
| #include <gtsam/slam/smallExample.h>
 | |
| #include <gtsam/inference/SymbolicFactorGraph.h>
 | |
| #include <gtsam/inference/SymbolicSequentialSolver.h>
 | |
| #include <gtsam/nonlinear/Ordering.h>
 | |
| 
 | |
| using namespace std;
 | |
| using namespace gtsam;
 | |
| using namespace example;
 | |
| 
 | |
| //Symbol _B_('B', 0), _L_('L', 0);
 | |
| //IndexConditional::shared_ptr
 | |
| //	B(new IndexConditional(_B_)),
 | |
| //	L(new IndexConditional(_L_, _B_));
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST( SymbolicBayesNet, constructor )
 | |
| {
 | |
|   Ordering o; o += "x2","l1","x1";
 | |
| 	// Create manually
 | |
| 	IndexConditional::shared_ptr
 | |
| 		x2(new IndexConditional(o["x2"],o["l1"], o["x1"])),
 | |
| 		l1(new IndexConditional(o["l1"],o["x1"])),
 | |
| 		x1(new IndexConditional(o["x1"]));
 | |
| 	BayesNet<IndexConditional> expected;
 | |
| 	expected.push_back(x2);
 | |
| 	expected.push_back(l1);
 | |
| 	expected.push_back(x1);
 | |
| 
 | |
| 	// Create from a factor graph
 | |
| 	GaussianFactorGraph factorGraph = createGaussianFactorGraph(o);
 | |
| 	SymbolicFactorGraph fg(factorGraph);
 | |
| 
 | |
| 	// eliminate it
 | |
|   SymbolicBayesNet actual = *SymbolicSequentialSolver(fg).eliminate();
 | |
| 
 | |
|   CHECK(assert_equal(expected, actual));
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| int main() {
 | |
| 	TestResult tr;
 | |
| 	return TestRegistry::runAllTests(tr);
 | |
| }
 | |
| /* ************************************************************************* */
 |