364 lines
12 KiB
C++
364 lines
12 KiB
C++
/* ----------------------------------------------------------------------------
|
|
|
|
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
|
* Atlanta, Georgia 30332-0415
|
|
* All Rights Reserved
|
|
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
|
|
|
* See LICENSE for the license information
|
|
|
|
* -------------------------------------------------------------------------- */
|
|
|
|
/**
|
|
* @file testIncrementalFixedLagSmoother.cpp
|
|
* @brief Unit tests for the Incremental Fixed-Lag Smoother
|
|
* @author Stephen Williams (swilliams8@gatech.edu)
|
|
* @date May 23, 2012
|
|
*/
|
|
|
|
#include <gtsam/base/debug.h>
|
|
#include <gtsam/geometry/Point2.h>
|
|
#include <gtsam/geometry/Pose3.h>
|
|
#include <gtsam/inference/Key.h>
|
|
#include <gtsam/inference/Ordering.h>
|
|
#include <gtsam/inference/Symbol.h>
|
|
#include <gtsam/linear/GaussianBayesNet.h>
|
|
#include <gtsam/linear/GaussianFactorGraph.h>
|
|
#include <gtsam/nonlinear/ISAM2.h>
|
|
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
|
|
#include <gtsam/nonlinear/Values.h>
|
|
#include <gtsam/slam/BetweenFactor.h>
|
|
#include <gtsam/slam/PriorFactor.h>
|
|
#include <gtsam/slam/dataset.h> // For writeG2o
|
|
#include <gtsam/nonlinear/IncrementalFixedLagSmoother.h>
|
|
|
|
#include <CppUnitLite/TestHarness.h>
|
|
|
|
#include <iostream>
|
|
#include <string>
|
|
|
|
using namespace std;
|
|
using namespace gtsam;
|
|
using symbol_shorthand::X;
|
|
using BetweenPoint2 = BetweenFactor<Point2>;
|
|
|
|
/* ************************************************************************* */
|
|
bool check_smoother(const NonlinearFactorGraph& fullgraph,
|
|
const Values& fullinit,
|
|
const IncrementalFixedLagSmoother& smoother,
|
|
const Key& key) {
|
|
GaussianFactorGraph linearized = *fullgraph.linearize(fullinit);
|
|
VectorValues delta = linearized.optimize();
|
|
Values fullfinal = fullinit.retract(delta);
|
|
|
|
Point2 expected = fullfinal.at<Point2>(key);
|
|
Point2 actual = smoother.calculateEstimate<Point2>(key);
|
|
|
|
return assert_equal(expected, actual);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
void PrintSymbolicTreeHelper(const ISAM2Clique::shared_ptr& clique,
|
|
const std::string indent = "") {
|
|
// Print the current clique
|
|
std::cout << indent << "P( ";
|
|
for (Key key : clique->conditional()->frontals()) {
|
|
std::cout << DefaultKeyFormatter(key) << " ";
|
|
}
|
|
if (clique->conditional()->nrParents() > 0) std::cout << "| ";
|
|
for (Key key : clique->conditional()->parents()) {
|
|
std::cout << DefaultKeyFormatter(key) << " ";
|
|
}
|
|
std::cout << ")" << std::endl;
|
|
|
|
// Recursively print all of the children
|
|
for (const ISAM2Clique::shared_ptr& child : clique->children) {
|
|
PrintSymbolicTreeHelper(child, indent + " ");
|
|
}
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
void PrintSymbolicTree(const ISAM2& isam, const std::string& label) {
|
|
std::cout << label << std::endl;
|
|
if (!isam.roots().empty()) {
|
|
for (const ISAM2::sharedClique& root : isam.roots()) {
|
|
PrintSymbolicTreeHelper(root);
|
|
}
|
|
} else
|
|
std::cout << "{Empty Tree}" << std::endl;
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST(IncrementalFixedLagSmoother, Example) {
|
|
// Test the IncrementalFixedLagSmoother in a pure linear environment. Thus,
|
|
// full optimization and the IncrementalFixedLagSmoother should be identical
|
|
// (even with the linearized approximations at the end of the smoothing lag)
|
|
|
|
SETDEBUG("IncrementalFixedLagSmoother update", true);
|
|
|
|
// Set up parameters
|
|
SharedDiagonal odoNoise = noiseModel::Diagonal::Sigmas(Vector2(0.1, 0.1));
|
|
SharedDiagonal loopNoise = noiseModel::Diagonal::Sigmas(Vector2(0.1, 0.1));
|
|
|
|
// Create a Fixed-Lag Smoother
|
|
typedef IncrementalFixedLagSmoother::KeyTimestampMap Timestamps;
|
|
IncrementalFixedLagSmoother smoother(12.0, ISAM2Params());
|
|
|
|
// Create containers to keep the full graph
|
|
Values fullinit;
|
|
NonlinearFactorGraph fullgraph;
|
|
|
|
// i keeps track of the time step
|
|
size_t i = 0;
|
|
|
|
// Add a prior at time 0 and update the HMF
|
|
{
|
|
Key key0 = X(0);
|
|
|
|
NonlinearFactorGraph newFactors;
|
|
Values newValues;
|
|
Timestamps newTimestamps;
|
|
|
|
newFactors.addPrior(key0, Point2(0.0, 0.0), odoNoise);
|
|
newValues.insert(key0, Point2(0.01, 0.01));
|
|
newTimestamps[key0] = 0.0;
|
|
|
|
fullgraph.push_back(newFactors);
|
|
fullinit.insert(newValues);
|
|
|
|
// Update the smoother
|
|
smoother.update(newFactors, newValues, newTimestamps);
|
|
|
|
// Check
|
|
CHECK(check_smoother(fullgraph, fullinit, smoother, key0));
|
|
|
|
++i;
|
|
}
|
|
|
|
// Add odometry from time 0 to time 5
|
|
while (i <= 5) {
|
|
Key key1 = X(i - 1);
|
|
Key key2 = X(i);
|
|
|
|
NonlinearFactorGraph newFactors;
|
|
Values newValues;
|
|
Timestamps newTimestamps;
|
|
|
|
newFactors.emplace_shared<BetweenPoint2>(key1, key2, Point2(1.0, 0.0),
|
|
odoNoise);
|
|
newValues.insert(key2, Point2(double(i) + 0.1, -0.1));
|
|
newTimestamps[key2] = double(i);
|
|
|
|
fullgraph.push_back(newFactors);
|
|
fullinit.insert(newValues);
|
|
|
|
// Update the smoother
|
|
smoother.update(newFactors, newValues, newTimestamps);
|
|
|
|
// Check
|
|
CHECK(check_smoother(fullgraph, fullinit, smoother, key2));
|
|
|
|
++i;
|
|
}
|
|
|
|
// Add odometry from time 5 to 6 to the HMF and a loop closure at time 5 to
|
|
// the TSM
|
|
{
|
|
// Add the odometry factor to the HMF
|
|
Key key1 = X(i - 1);
|
|
Key key2 = X(i);
|
|
|
|
NonlinearFactorGraph newFactors;
|
|
Values newValues;
|
|
Timestamps newTimestamps;
|
|
|
|
newFactors.emplace_shared<BetweenPoint2>(key1, key2, Point2(1.0, 0.0),
|
|
odoNoise);
|
|
newFactors.emplace_shared<BetweenPoint2>(X(2), X(5), Point2(3.5, 0.0),
|
|
loopNoise);
|
|
newValues.insert(key2, Point2(double(i) + 0.1, -0.1));
|
|
newTimestamps[key2] = double(i);
|
|
|
|
fullgraph.push_back(newFactors);
|
|
fullinit.insert(newValues);
|
|
|
|
// Update the smoother
|
|
smoother.update(newFactors, newValues, newTimestamps);
|
|
|
|
// Check
|
|
CHECK(check_smoother(fullgraph, fullinit, smoother, key2));
|
|
|
|
++i;
|
|
}
|
|
|
|
// Add odometry from time 6 to time 15
|
|
while (i <= 15) {
|
|
Key key1 = X(i - 1);
|
|
Key key2 = X(i);
|
|
|
|
NonlinearFactorGraph newFactors;
|
|
Values newValues;
|
|
Timestamps newTimestamps;
|
|
|
|
// Add the odometry factor twice to ensure the removeFactor test below
|
|
// works, where we need to keep the connectivity of the graph.
|
|
newFactors.emplace_shared<BetweenPoint2>(key1, key2, Point2(1.0, 0.0),
|
|
odoNoise);
|
|
newFactors.emplace_shared<BetweenPoint2>(key1, key2, Point2(1.0, 0.0),
|
|
odoNoise);
|
|
newValues.insert(key2, Point2(double(i) + 0.1, -0.1));
|
|
newTimestamps[key2] = double(i);
|
|
|
|
fullgraph.push_back(newFactors);
|
|
fullinit.insert(newValues);
|
|
|
|
// Update the smoother
|
|
smoother.update(newFactors, newValues, newTimestamps);
|
|
|
|
// Check
|
|
CHECK(check_smoother(fullgraph, fullinit, smoother, key2));
|
|
|
|
++i;
|
|
}
|
|
|
|
// add/remove an extra factor
|
|
{
|
|
Key key1 = X(i - 1);
|
|
Key key2 = X(i);
|
|
|
|
NonlinearFactorGraph newFactors;
|
|
Values newValues;
|
|
Timestamps newTimestamps;
|
|
|
|
// add 2 odometry factors
|
|
newFactors.emplace_shared<BetweenPoint2>(key1, key2, Point2(1.0, 0.0),
|
|
odoNoise);
|
|
newFactors.emplace_shared<BetweenPoint2>(key1, key2, Point2(1.0, 0.0),
|
|
odoNoise);
|
|
newValues.insert(key2, Point2(double(i) + 0.1, -0.1));
|
|
newTimestamps[key2] = double(i);
|
|
++i;
|
|
|
|
fullgraph.push_back(newFactors);
|
|
fullinit.insert(newValues);
|
|
|
|
// Update the smoother
|
|
smoother.update(newFactors, newValues, newTimestamps);
|
|
|
|
// Check
|
|
CHECK(check_smoother(fullgraph, fullinit, smoother, key2));
|
|
|
|
// now remove one of the two and try again
|
|
// empty values and new factors for fake update in which we only remove
|
|
// factors
|
|
NonlinearFactorGraph emptyNewFactors;
|
|
Values emptyNewValues;
|
|
Timestamps emptyNewTimestamps;
|
|
|
|
size_t factorIndex =
|
|
25; // any index that does not break connectivity of the graph
|
|
FactorIndices factorToRemove;
|
|
factorToRemove.push_back(factorIndex);
|
|
|
|
const NonlinearFactorGraph smootherFactorsBeforeRemove =
|
|
smoother.getFactors();
|
|
|
|
std::cout << "fullgraph.size() = " << fullgraph.size() << std::endl;
|
|
std::cout << "smootherFactorsBeforeRemove.size() = "
|
|
<< smootherFactorsBeforeRemove.size() << std::endl;
|
|
|
|
// remove factor
|
|
smoother.update(emptyNewFactors, emptyNewValues, emptyNewTimestamps,
|
|
factorToRemove);
|
|
|
|
// Note: the following test (checking that the number of factor is reduced
|
|
// by 1) fails since we are not reusing slots, hence also when removing a
|
|
// factor we do not change the size of the factor graph size_t
|
|
// nrFactorsAfterRemoval = smoother.getFactors().size();
|
|
// DOUBLES_EQUAL(nrFactorsBeforeRemoval-1, nrFactorsAfterRemoval, 1e-5);
|
|
|
|
// check that the factors in the smoother are right
|
|
NonlinearFactorGraph actual = smoother.getFactors();
|
|
for (size_t i = 0; i < smootherFactorsBeforeRemove.size(); i++) {
|
|
// check that the factors that were not removed are there
|
|
if (smootherFactorsBeforeRemove[i] && i != factorIndex) {
|
|
EXPECT(smootherFactorsBeforeRemove[i]->equals(*actual[i]));
|
|
} else { // while the factors that were not there or were removed are no
|
|
// longer there
|
|
EXPECT(!actual[i]);
|
|
}
|
|
}
|
|
}
|
|
|
|
{
|
|
SETDEBUG("BayesTreeMarginalizationHelper", true);
|
|
PrintSymbolicTree(smoother.getISAM2(),
|
|
"Bayes Tree Before marginalization test:");
|
|
|
|
// Do pressure test on marginalization. Enlarge max_i to enhance the test.
|
|
const int max_i = 500;
|
|
while (i <= max_i) {
|
|
Key key_0 = X(i);
|
|
Key key_1 = X(i - 1);
|
|
Key key_2 = X(i - 2);
|
|
Key key_3 = X(i - 3);
|
|
Key key_4 = X(i - 4);
|
|
Key key_5 = X(i - 5);
|
|
Key key_6 = X(i - 6);
|
|
Key key_7 = X(i - 7);
|
|
Key key_8 = X(i - 8);
|
|
Key key_9 = X(i - 9);
|
|
Key key_10 = X(i - 10);
|
|
|
|
NonlinearFactorGraph newFactors;
|
|
Values newValues;
|
|
Timestamps newTimestamps;
|
|
|
|
// To make a complex graph
|
|
const Point2 z(1.0, 0.0);
|
|
newFactors.emplace_shared<BetweenPoint2>(key_1, key_0, z, odoNoise);
|
|
if (i % 2 == 0)
|
|
newFactors.emplace_shared<BetweenPoint2>(key_2, key_1, z, odoNoise);
|
|
if (i % 3 == 0)
|
|
newFactors.emplace_shared<BetweenPoint2>(key_3, key_2, z, odoNoise);
|
|
if (i % 4 == 0)
|
|
newFactors.emplace_shared<BetweenPoint2>(key_4, key_3, z, odoNoise);
|
|
if (i % 5 == 0)
|
|
newFactors.emplace_shared<BetweenPoint2>(key_5, key_4, z, odoNoise);
|
|
if (i % 6 == 0)
|
|
newFactors.emplace_shared<BetweenPoint2>(key_6, key_5, z, odoNoise);
|
|
if (i % 7 == 0)
|
|
newFactors.emplace_shared<BetweenPoint2>(key_7, key_6, z, odoNoise);
|
|
if (i % 8 == 0)
|
|
newFactors.emplace_shared<BetweenPoint2>(key_8, key_7, z, odoNoise);
|
|
if (i % 9 == 0)
|
|
newFactors.emplace_shared<BetweenPoint2>(key_9, key_8, z, odoNoise);
|
|
if (i % 10 == 0)
|
|
newFactors.emplace_shared<BetweenPoint2>(key_10, key_9, z, odoNoise);
|
|
|
|
newValues.insert(key_0, Point2(double(i) + 0.1, -0.1));
|
|
newTimestamps[key_0] = double(i);
|
|
|
|
fullgraph.push_back(newFactors);
|
|
fullinit.insert(newValues);
|
|
|
|
// Update the smoother
|
|
smoother.update(newFactors, newValues, newTimestamps);
|
|
|
|
// Check
|
|
CHECK(check_smoother(fullgraph, fullinit, smoother, key_0));
|
|
PrintSymbolicTree(
|
|
smoother.getISAM2(),
|
|
"Bayes Tree marginalization test: i = " + std::to_string(i));
|
|
|
|
++i;
|
|
}
|
|
}
|
|
}
|
|
|
|
int main() {
|
|
TestResult tr;
|
|
return TestRegistry::runAllTests(tr);
|
|
}
|
|
/* ************************************************************************* */
|