gtsam/cpp/testSQP.cpp

822 lines
26 KiB
C++

/*
* @file testSQP.cpp
* @brief demos of SQP using existing gtsam components
* @author Alex Cunningham
*/
#include <iostream>
#include <cmath>
#include <boost/assign/std/list.hpp> // for operator +=
#include <boost/assign/std/map.hpp> // for insert
#include <boost/foreach.hpp>
#include <boost/shared_ptr.hpp>
#include <CppUnitLite/TestHarness.h>
#define GTSAM_MAGIC_KEY
#include <Point2.h>
#include <Pose3.h>
#include <GaussianFactorGraph.h>
#include <NonlinearOptimizer.h>
#include <simulated2D.h>
#include <Ordering.h>
#include <visualSLAM.h>
// templated implementations
#include <NonlinearFactorGraph-inl.h>
#include <NonlinearConstraint-inl.h>
#include <NonlinearOptimizer-inl.h>
#include <TupleConfig-inl.h>
using namespace std;
using namespace gtsam;
using namespace boost;
using namespace boost::assign;
// Models to use
SharedDiagonal probModel1 = sharedSigma(1,1.0);
SharedDiagonal probModel2 = sharedSigma(2,1.0);
SharedDiagonal constraintModel1 = noiseModel::Constrained::All(1);
// trick from some reading group
#define FOREACH_PAIR( KEY, VAL, COL) BOOST_FOREACH (boost::tie(KEY,VAL),COL)
/* *********************************************************************
* This example uses a nonlinear objective function and
* nonlinear equality constraint. The formulation is actually
* the Cholesky form that creates the full Hessian explicitly,
* which should really be avoided with our QR-based machinery.
*
* Note: the update equation used here has a fixed step size
* and gain that is rather arbitrarily chosen, and as such,
* will take a silly number of iterations.
*/
TEST (SQP, problem1_cholesky ) {
bool verbose = false;
// use a nonlinear function of f(x) = x^2+y^2
// nonlinear equality constraint: g(x) = x^2-5-y=0
// Lagrangian: f(x) + \lambda*g(x)
// Symbols
Symbol x1("x1"), y1("y1"), L1("L1");
// state structure: [x y \lambda]
VectorConfig init, state;
init.insert(x1, Vector_(1, 1.0));
init.insert(y1, Vector_(1, 1.0));
init.insert(L1, Vector_(1, 1.0));
state = init;
if (verbose) init.print("Initial State");
// loop until convergence
int maxIt = 10;
for (int i = 0; i<maxIt; ++i) {
if (verbose) cout << "\n******************************\nIteration: " << i+1 << endl;
// extract the states
double x, y, lambda;
x = state[x1](0);
y = state[y1](0);
lambda = state[L1](0);
// calculate the components
Matrix H1, H2, gradG;
Vector gradL, gx;
// hessian of lagrangian function, in two columns:
H1 = Matrix_(2,1,
2.0+2.0*lambda,
0.0);
H2 = Matrix_(2,1,
0.0,
2.0);
// deriviative of lagrangian function
gradL = Vector_(2,
2.0*x*(1+lambda),
2.0*y-lambda);
// constraint derivatives
gradG = Matrix_(2,1,
2.0*x,
0.0);
// constraint value
gx = Vector_(1,
x*x-5-y);
// create a factor for the states
GaussianFactor::shared_ptr f1(new
GaussianFactor(x1, H1, y1, H2, L1, gradG, gradL, probModel2));
// create a factor for the lagrange multiplier
GaussianFactor::shared_ptr f2(new
GaussianFactor(x1, -sub(gradG, 0, 1, 0, 1),
y1, -sub(gradG, 1, 2, 0, 1), -gx, constraintModel1));
// construct graph
GaussianFactorGraph fg;
fg.push_back(f1);
fg.push_back(f2);
if (verbose) fg.print("Graph");
// solve
Ordering ord;
ord += x1, y1, L1;
VectorConfig delta = fg.optimize(ord).scale(-1.0);
if (verbose) delta.print("Delta");
// update initial estimate
VectorConfig newState = expmap(state, delta);
state = newState;
if (verbose) state.print("Updated State");
}
// verify that it converges to the nearest optimal point
VectorConfig expected;
expected.insert(L1, Vector_(1, -1.0));
expected.insert(x1, Vector_(1, 2.12));
expected.insert(y1, Vector_(1, -0.5));
CHECK(assert_equal(expected,state, 1e-2));
}
/* *********************************************************************
* This example uses a nonlinear objective function and
* nonlinear equality constraint. This formulation splits
* the constraint into a factor and a linear constraint.
*
* This example uses the same silly number of iterations as the
* previous example.
*/
TEST (SQP, problem1_sqp ) {
bool verbose = false;
// use a nonlinear function of f(x) = x^2+y^2
// nonlinear equality constraint: g(x) = x^2-5-y=0
// Lagrangian: f(x) + \lambda*g(x)
// Symbols
Symbol x1("x1"), y1("y1"), L1("L1");
// state structure: [x y \lambda]
VectorConfig init, state;
init.insert(x1, Vector_(1, 1.0));
init.insert(y1, Vector_(1, 1.0));
init.insert(L1, Vector_(1, 1.0));
state = init;
if (verbose) init.print("Initial State");
// loop until convergence
int maxIt = 5;
for (int i = 0; i<maxIt; ++i) {
if (verbose) cout << "\n******************************\nIteration: " << i+1 << endl;
// extract the states
double x, y, lambda;
x = state[x1](0);
y = state[y1](0);
lambda = state[L1](0);
/** create the linear factor
* ||h(x)-z||^2 => ||Ax-b||^2
* where:
* h(x) simply returns the inputs
* z zeros(2)
* A identity
* b linearization point
*/
Matrix A = eye(2);
Vector b = Vector_(2, x, y);
GaussianFactor::shared_ptr f1(
new GaussianFactor(x1, sub(A, 0,2, 0,1), // A(:,1)
y1, sub(A, 0,2, 1,2), // A(:,2)
b, // rhs of f(x)
probModel2)); // arbitrary sigma
/** create the constraint-linear factor
* Provides a mechanism to use variable gain to force the constraint
* \lambda*gradG*dx + d\lambda = zero
* formulated in matrix form as:
* [\lambda*gradG eye(1)] [dx; d\lambda] = zero
*/
Matrix gradG = Matrix_(1, 2,2*x, -1.0);
GaussianFactor::shared_ptr f2(
new GaussianFactor(x1, lambda*sub(gradG, 0,1, 0,1), // scaled gradG(:,1)
y1, lambda*sub(gradG, 0,1, 1,2), // scaled gradG(:,2)
L1, eye(1), // dlambda term
Vector_(1, 0.0), // rhs is zero
probModel1)); // arbitrary sigma
// create the actual constraint
// [gradG] [x; y] - g = 0
Vector g = Vector_(1,x*x-y-5);
GaussianFactor::shared_ptr c1(
new GaussianFactor(x1, sub(gradG, 0,1, 0,1), // slice first part of gradG
y1, sub(gradG, 0,1, 1,2), // slice second part of gradG
g, // value of constraint function
constraintModel1)); // force to constraint
// construct graph
GaussianFactorGraph fg;
fg.push_back(f1);
fg.push_back(f2);
fg.push_back(c1);
if (verbose) fg.print("Graph");
// solve
Ordering ord;
ord += x1, y1, L1;
VectorConfig delta = fg.optimize(ord);
if (verbose) delta.print("Delta");
// update initial estimate
VectorConfig newState = expmap(state, delta.scale(-1.0));
// set the state to the updated state
state = newState;
if (verbose) state.print("Updated State");
}
// verify that it converges to the nearest optimal point
VectorConfig expected;
expected.insert(x1, Vector_(1, 2.12));
expected.insert(y1, Vector_(1, -0.5));
CHECK(assert_equal(state[x1], expected[x1], 1e-2));
CHECK(assert_equal(state[y1], expected[y1], 1e-2));
}
/* ********************************************************************* */
// Basic configs
typedef LieConfig<LagrangeKey, Vector> LagrangeConfig;
// full components
typedef TupleConfig3<LieConfig<simulated2D::PoseKey, Point2>,
LieConfig<simulated2D::PointKey, Point2>,
LieConfig<LagrangeKey, Vector> > Config2D;
//typedef TupleConfig<LagrangeConfig, TupleConfigEnd<simulated2D::Config> > Config2D;
typedef NonlinearFactorGraph<Config2D> Graph2D;
typedef NonlinearEquality<Config2D, simulated2D::PoseKey, Point2> NLE;
typedef boost::shared_ptr<simulated2D::GenericMeasurement<Config2D> > shared;
typedef NonlinearOptimizer<Graph2D, Config2D> Optimizer;
/*
* Determining a ground truth linear system
* with two poses seeing one landmark, with each pose
* constrained to a particular value
*/
TEST (SQP, two_pose_truth ) {
bool verbose = false;
// create a graph
shared_ptr<Graph2D> graph(new Graph2D);
// add the constraints on the ends
// position (1, 1) constraint for x1
// position (5, 6) constraint for x2
simulated2D::PoseKey x1(1), x2(2);
simulated2D::PointKey l1(1);
Point2 pt_x1(1.0, 1.0),
pt_x2(5.0, 6.0);
shared_ptr<NLE> ef1(new NLE(x1, pt_x1)),
ef2(new NLE(x2, pt_x2));
graph->push_back(ef1);
graph->push_back(ef2);
// measurement from x1 to l1
Point2 z1(0.0, 5.0);
SharedGaussian sigma(noiseModel::Isotropic::Sigma(2, 0.1));
shared f1(new simulated2D::GenericMeasurement<Config2D>(z1, sigma, x1,l1));
graph->push_back(f1);
// measurement from x2 to l1
Point2 z2(-4.0, 0.0);
shared f2(new simulated2D::GenericMeasurement<Config2D>(z2, sigma, x2,l1));
graph->push_back(f2);
// create an initial estimate
Point2 pt_l1(
1.0, 6.0 // ground truth
//1.2, 5.6 // small error
);
shared_ptr<Config2D> initialEstimate(new Config2D);
initialEstimate->insert(l1, pt_l1);
initialEstimate->insert(x1, pt_x1);
initialEstimate->insert(x2, pt_x2);
// optimize the graph
shared_ptr<Ordering> ordering(new Ordering());
*ordering += "x1", "x2", "l1";
Optimizer::shared_solver solver(new Optimizer::solver(ordering));
Optimizer optimizer(graph, initialEstimate, solver);
// display solution
double relativeThreshold = 1e-5;
double absoluteThreshold = 1e-5;
Optimizer act_opt = optimizer.gaussNewton(relativeThreshold, absoluteThreshold);
boost::shared_ptr<const Config2D> actual = act_opt.config();
if (verbose) actual->print("Configuration after optimization");
// verify
Config2D expected;
expected.insert(x1, pt_x1);
expected.insert(x2, pt_x2);
expected.insert(l1, Point2(1.0, 6.0));
CHECK(assert_equal(expected, *actual, 1e-5));
}
/* ********************************************************************* */
namespace sqp_test1 {
// binary constraint between landmarks
/** g(x) = x-y = 0 */
Vector g(const Config2D& config, const list<simulated2D::PointKey>& keys) {
Point2 pt1, pt2;
pt1 = config[simulated2D::PointKey(keys.front().index())];
pt2 = config[simulated2D::PointKey(keys.back().index())];
return Vector_(2, pt1.x() - pt2.x(), pt1.y() - pt2.y());
}
/** jacobian at l1 */
Matrix G1(const Config2D& config, const list<simulated2D::PointKey>& keys) {
return eye(2);
}
/** jacobian at l2 */
Matrix G2(const Config2D& config, const list<simulated2D::PointKey>& keys) {
return -1 * eye(2);
}
} // \namespace sqp_test1
namespace sqp_test2 {
// Unary Constraint on x1
/** g(x) = x -[1;1] = 0 */
Vector g(const Config2D& config, const list<simulated2D::PoseKey>& keys) {
Point2 x = config[keys.front()];
return Vector_(2, x.x() - 1.0, x.y() - 1.0);
}
/** jacobian at x1 */
Matrix G(const Config2D& config, const list<simulated2D::PoseKey>& keys) {
return eye(2);
}
} // \namespace sqp_test2
typedef NonlinearConstraint2<
Config2D, simulated2D::PointKey, Point2, simulated2D::PointKey, Point2> NLC2;
/* *********************************************************************
* Version that actually uses nonlinear equality constraints
* to to perform optimization. Same as above, but no
* equality constraint on x2, and two landmarks that
* should be the same. Note that this is a linear system,
* so it will converge in one step.
*/
TEST (SQP, two_pose ) {
bool verbose = false;
// create the graph
shared_ptr<Graph2D> graph(new Graph2D);
// add the constraints on the ends
// position (1, 1) constraint for x1
// position (5, 6) constraint for x2
simulated2D::PoseKey x1(1), x2(2);
simulated2D::PointKey l1(1), l2(2);
Point2 pt_x1(1.0, 1.0),
pt_x2(5.0, 6.0);
shared_ptr<NLE> ef1(new NLE(x1, pt_x1));
graph->push_back(ef1);
// measurement from x1 to l1
Point2 z1(0.0, 5.0);
SharedGaussian sigma(noiseModel::Isotropic::Sigma(2, 0.1));
shared f1(new simulated2D::GenericMeasurement<Config2D>(z1, sigma, x1,l1));
graph->push_back(f1);
// measurement from x2 to l2
Point2 z2(-4.0, 0.0);
shared f2(new simulated2D::GenericMeasurement<Config2D>(z2, sigma, x2,l2));
graph->push_back(f2);
// equality constraint between l1 and l2
LagrangeKey L1(1);
list<simulated2D::PointKey> keys2; keys2 += l1, l2;
boost::shared_ptr<NLC2 > c2(new NLC2(
boost::bind(sqp_test1::g, _1, keys2),
l1, boost::bind(sqp_test1::G1, _1, keys2),
l2, boost::bind(sqp_test1::G2, _1, keys2),
2, L1));
graph->push_back(c2);
if (verbose) graph->print("Initial nonlinear graph with constraints");
// create an initial estimate
shared_ptr<Config2D> initialEstimate(new Config2D);
initialEstimate->insert(x1, pt_x1);
initialEstimate->insert(x2, Point2());
initialEstimate->insert(l1, Point2(1.0, 6.0)); // ground truth
initialEstimate->insert(l2, Point2(-4.0, 0.0)); // starting with a separate reference frame
initialEstimate->insert(L1, Vector_(2, 1.0, 1.0)); // connect the landmarks
// create state config variables and initialize them
Config2D state(*initialEstimate);
// linearize the graph
GaussianFactorGraph fg = graph->linearize(state);
if (verbose) fg.print("Linearized graph");
// create an ordering
Ordering ordering;
ordering += "x1", "x2", "l1", "l2", "L1";
// optimize linear graph to get full delta config
GaussianBayesNet cbn = fg.eliminate(ordering);
if (verbose) cbn.print("ChordalBayesNet");
VectorConfig delta = optimize(cbn); //fg.optimize(ordering);
if (verbose) delta.print("Delta Config");
// update both state variables
state = expmap(state, delta);
if (verbose) state.print("newState");
// verify
Config2D expected;
expected.insert(x1, pt_x1);
expected.insert(l1, Point2(1.0, 6.0));
expected.insert(l2, Point2(1.0, 6.0));
expected.insert(x2, Point2(5.0, 6.0));
expected.insert(L1, Vector_(2, 6.0, 7.0));
CHECK(assert_equal(expected, state, 1e-5));
}
/* ********************************************************************* */
// VSLAM Examples
/* ********************************************************************* */
// make a realistic calibration matrix
double fov = 60; // degrees
size_t w=640,h=480;
Cal3_S2 K(fov,w,h);
boost::shared_ptr<Cal3_S2> shK(new Cal3_S2(K));
using namespace gtsam::visualSLAM;
using namespace boost;
// typedefs for visual SLAM example
typedef TypedSymbol<Pose3, 'x'> Pose3Key;
typedef TypedSymbol<Point3, 'l'> Point3Key;
typedef TupleConfig3<LieConfig<LagrangeKey, Vector>,
LieConfig<Pose3Key, Pose3>,
LieConfig<Point3Key, Point3> > VConfig;
typedef NonlinearFactorGraph<VConfig> VGraph;
typedef boost::shared_ptr<GenericProjectionFactor<VConfig> > shared_vf;
typedef NonlinearOptimizer<VGraph,VConfig> VOptimizer;
typedef NonlinearConstraint2<
VConfig, visualSLAM::PointKey, Pose3, visualSLAM::PointKey, Pose3> VNLC2;
typedef NonlinearEquality<VConfig, Pose3Key, Pose3> Pose3Constraint;
/**
* Ground truth for a visual SLAM example with stereo vision
*/
TEST (SQP, stereo_truth ) {
bool verbose = false;
// create initial estimates
Rot3 faceDownY(Matrix_(3,3,
1.0, 0.0, 0.0,
0.0, 0.0, 1.0,
0.0, 1.0, 0.0));
Pose3 pose1(faceDownY, Point3()); // origin, left camera
SimpleCamera camera1(K, pose1);
Pose3 pose2(faceDownY, Point3(2.0, 0.0, 0.0)); // 2 units to the left
SimpleCamera camera2(K, pose2);
Point3 landmark(1.0, 5.0, 0.0); //centered between the cameras, 5 units away
Point3 landmarkNoisy(1.0, 6.0, 0.0);
// create truth config
boost::shared_ptr<VConfig> truthConfig(new VConfig);
truthConfig->insert(Pose3Key(1), camera1.pose());
truthConfig->insert(Pose3Key(2), camera2.pose());
truthConfig->insert(Point3Key(1), landmark);
// create graph
shared_ptr<VGraph> graph(new VGraph());
// create equality constraints for poses
graph->push_back(shared_ptr<Pose3Constraint>(new Pose3Constraint(Pose3Key(1), camera1.pose())));
graph->push_back(shared_ptr<Pose3Constraint>(new Pose3Constraint(Pose3Key(2), camera2.pose())));
// create VSLAM factors
Point2 z1 = camera1.project(landmark);
if (verbose) z1.print("z1");
SharedDiagonal vmodel = noiseModel::Unit::Create(3);
//ProjectionFactor test_vf(z1, vmodel, Pose3Key(1), Point3Key(1), shK);
shared_vf vf1(new GenericProjectionFactor<VConfig>(
z1, vmodel, Pose3Key(1), Point3Key(1), shK));
graph->push_back(vf1);
Point2 z2 = camera2.project(landmark);
if (verbose) z2.print("z2");
shared_vf vf2(new GenericProjectionFactor<VConfig>(
z2, vmodel, Pose3Key(2), Point3Key(1), shK));
graph->push_back(vf2);
if (verbose) graph->print("Graph after construction");
// create ordering
shared_ptr<Ordering> ord(new Ordering());
*ord += "x1", "x2", "l1";
// create optimizer
VOptimizer::shared_solver solver(new VOptimizer::solver(ord));
VOptimizer optimizer(graph, truthConfig, solver);
// optimize
VOptimizer afterOneIteration = optimizer.iterate();
// verify
DOUBLES_EQUAL(0.0, optimizer.error(), 1e-9);
// check if correct
if (verbose) afterOneIteration.config()->print("After iteration");
CHECK(assert_equal(*truthConfig,*(afterOneIteration.config())));
}
/* *********************************************************************
* Ground truth for a visual SLAM example with stereo vision
* with some noise injected into the initial config
*/
TEST (SQP, stereo_truth_noisy ) {
bool verbose = false;
// setting to determine how far away the noisy landmark is,
// given that the ground truth is 5m in front of the cameras
double noisyDist = 7.6;
// create initial estimates
Rot3 faceDownY(Matrix_(3,3,
1.0, 0.0, 0.0,
0.0, 0.0, 1.0,
0.0, 1.0, 0.0));
Pose3 pose1(faceDownY, Point3()); // origin, left camera
SimpleCamera camera1(K, pose1);
Pose3 pose2(faceDownY, Point3(2.0, 0.0, 0.0)); // 2 units to the left
SimpleCamera camera2(K, pose2);
Point3 landmark(1.0, 5.0, 0.0); //centered between the cameras, 5 units away
Point3 landmarkNoisy(1.0, noisyDist, 0.0); // initial point is too far out
// create truth config
boost::shared_ptr<VConfig> truthConfig(new VConfig);
truthConfig->insert(Pose3Key(1), camera1.pose());
truthConfig->insert(Pose3Key(2), camera2.pose());
truthConfig->insert(Point3Key(1), landmark);
// create config
boost::shared_ptr<VConfig> noisyConfig(new VConfig);
noisyConfig->insert(Pose3Key(1), camera1.pose());
noisyConfig->insert(Pose3Key(2), camera2.pose());
noisyConfig->insert(Point3Key(1), landmarkNoisy);
// create graph
shared_ptr<VGraph> graph(new VGraph());
// create equality constraints for poses
graph->push_back(shared_ptr<Pose3Constraint>(new Pose3Constraint(Pose3Key(1), camera1.pose())));
graph->push_back(shared_ptr<Pose3Constraint>(new Pose3Constraint(Pose3Key(2), camera2.pose())));
// create VSLAM factors
Point2 z1 = camera1.project(landmark);
if (verbose) z1.print("z1");
SharedDiagonal vmodel = noiseModel::Unit::Create(3);
shared_vf vf1(new GenericProjectionFactor<VConfig>(
z1, vmodel, Pose3Key(1), Point3Key(1), shK));
graph->push_back(vf1);
Point2 z2 = camera2.project(landmark);
if (verbose) z2.print("z2");
shared_vf vf2(new GenericProjectionFactor<VConfig>(
z2, vmodel, Pose3Key(2), Point3Key(1), shK));
graph->push_back(vf2);
if (verbose) {
graph->print("Graph after construction");
noisyConfig->print("Initial config");
}
// create ordering
shared_ptr<Ordering> ord(new Ordering());
*ord += "x1", "x2", "l1";
// create optimizer
VOptimizer::shared_solver solver(new VOptimizer::solver(ord));
VOptimizer optimizer0(graph, noisyConfig, solver);
if (verbose)
cout << "Initial Error: " << optimizer0.error() << endl;
// use Levenberg-Marquardt optimization
double relThresh = 1e-5, absThresh = 1e-5;
VOptimizer optimizer(optimizer0.levenbergMarquardt(relThresh, absThresh, VOptimizer::SILENT));
// verify
DOUBLES_EQUAL(0.0, optimizer.error(), 1e-9);
// check if correct
if (verbose) {
optimizer.config()->print("After iteration");
cout << "Final error: " << optimizer.error() << endl;
}
CHECK(assert_equal(*truthConfig,*(optimizer.config())));
}
/* ********************************************************************* */
namespace sqp_stereo {
// binary constraint between landmarks
/** g(x) = x-y = 0 */
Vector g(const VConfig& config, const list<Point3Key>& keys) {
return config[keys.front()].vector()
- config[keys.back()].vector();
}
/** jacobian at l1 */
Matrix G1(const VConfig& config, const list<Point3Key>& keys) {
return eye(3);
}
/** jacobian at l2 */
Matrix G2(const VConfig& config, const list<Point3Key>& keys) {
return -1.0 * eye(3);
}
} // \namespace sqp_stereo
/* ********************************************************************* */
boost::shared_ptr<VGraph> stereoExampleGraph() {
// create initial estimates
Rot3 faceDownY(Matrix_(3,3,
1.0, 0.0, 0.0,
0.0, 0.0, 1.0,
0.0, 1.0, 0.0));
Pose3 pose1(faceDownY, Point3()); // origin, left camera
SimpleCamera camera1(K, pose1);
Pose3 pose2(faceDownY, Point3(2.0, 0.0, 0.0)); // 2 units to the left
SimpleCamera camera2(K, pose2);
Point3 landmark1(1.0, 5.0, 0.0); //centered between the cameras, 5 units away
Point3 landmark2(1.0, 5.0, 0.0);
// create graph
shared_ptr<VGraph> graph(new VGraph);
// create equality constraints for poses
graph->push_back(shared_ptr<Pose3Constraint>(new Pose3Constraint(Pose3Key(1), camera1.pose())));
graph->push_back(shared_ptr<Pose3Constraint>(new Pose3Constraint(Pose3Key(2), camera2.pose())));
// create factors
Point2 z1 = camera1.project(landmark1);
SharedDiagonal vmodel = noiseModel::Unit::Create(3);
shared_vf vf1(new GenericProjectionFactor<VConfig>(
z1, vmodel, Pose3Key(1), Point3Key(1), shK));
graph->push_back(vf1);
Point2 z2 = camera2.project(landmark2);
shared_vf vf2(new GenericProjectionFactor<VConfig>(
z2, vmodel, Pose3Key(2), Point3Key(2), shK));
graph->push_back(vf2);
// create the binary equality constraint between the landmarks
// NOTE: this is really just a linear constraint that is exactly the same
// as the previous examples
visualSLAM::PointKey l1(1), l2(2);
list<Point3Key> keys; keys += l1, l2;
LagrangeKey L12(12);
shared_ptr<VNLC2> c2(
new VNLC2(boost::bind(sqp_stereo::g, _1, keys),
l1, boost::bind(sqp_stereo::G1, _1, keys),
l2, boost::bind(sqp_stereo::G2, _1, keys),
3, L12));
graph->push_back(c2);
return graph;
}
/* ********************************************************************* */
boost::shared_ptr<VConfig> stereoExampleTruthConfig() {
// create initial estimates
Rot3 faceDownY(Matrix_(3,3,
1.0, 0.0, 0.0,
0.0, 0.0, 1.0,
0.0, 1.0, 0.0));
Pose3 pose1(faceDownY, Point3()); // origin, left camera
SimpleCamera camera1(K, pose1);
Pose3 pose2(faceDownY, Point3(2.0, 0.0, 0.0)); // 2 units to the left
SimpleCamera camera2(K, pose2);
Point3 landmark1(1.0, 5.0, 0.0); //centered between the cameras, 5 units away
Point3 landmark2(1.0, 5.0, 0.0);
// create config
boost::shared_ptr<VConfig> truthConfig(new VConfig);
truthConfig->insert(Pose3Key(1), camera1.pose());
truthConfig->insert(Pose3Key(2), camera2.pose());
truthConfig->insert(Point3Key(1), landmark1);
truthConfig->insert(Point3Key(2), landmark2); // create two landmarks in same place
//truthConfig->insert(LagrangeKey(12), Vector_(3, 1.0, 1.0, 1.0));
return truthConfig;
}
/* *********************************************************************
* SQP version of the above stereo example,
* with the initial case as the ground truth
*/
TEST (SQP, stereo_sqp ) {
bool verbose = false;
// get a graph
boost::shared_ptr<VGraph> graph = stereoExampleGraph();
if (verbose) graph->print("Graph after construction");
// get the truth config
boost::shared_ptr<VConfig> truthConfig = stereoExampleTruthConfig();
truthConfig->insert(LagrangeKey(12), Vector_(3, 1.0, 1.0, 1.0));
// create ordering
shared_ptr<Ordering> ord(new Ordering());
*ord += "x1", "x2", "l1", "l2", "L12";
VOptimizer::shared_solver solver(new VOptimizer::solver(ord));
// create optimizer
VOptimizer optimizer(graph, truthConfig, solver);
// optimize
VOptimizer afterOneIteration = optimizer.iterate();
// check if correct
CHECK(assert_equal(*truthConfig,*(afterOneIteration.config())));
}
/* *********************************************************************
* SQP version of the above stereo example,
* with noise in the initial estimate
*/
TEST (SQP, stereo_sqp_noisy ) {
bool verbose = false;
// get a graph
boost::shared_ptr<VGraph> graph = stereoExampleGraph();
// create initial data
Rot3 faceDownY(Matrix_(3,3,
1.0, 0.0, 0.0,
0.0, 0.0, 1.0,
0.0, 1.0, 0.0));
Pose3 pose1(faceDownY, Point3()); // origin, left camera
Pose3 pose2(faceDownY, Point3(2.0, 0.0, 0.0)); // 2 units to the left
Point3 landmark1(0.5, 5.0, 0.0); //centered between the cameras, 5 units away
Point3 landmark2(1.5, 5.0, 0.0);
// noisy config
boost::shared_ptr<VConfig> initConfig(new VConfig);
initConfig->insert(Pose3Key(1), pose1);
initConfig->insert(Pose3Key(2), pose2);
initConfig->insert(Point3Key(1), landmark1);
initConfig->insert(Point3Key(2), landmark2); // create two landmarks in same place
initConfig->insert(LagrangeKey(12), Vector_(3, 1.0, 1.0, 1.0));
// create ordering
shared_ptr<Ordering> ord(new Ordering());
*ord += "x1", "x2", "l1", "l2", "L12";
VOptimizer::shared_solver solver(new VOptimizer::solver(ord));
// create optimizer
VOptimizer optimizer(graph, initConfig, solver);
// optimize
VOptimizer *pointer = new VOptimizer(optimizer);
for (int i=0;i<1;i++) {
VOptimizer* newOptimizer = new VOptimizer(pointer->iterateLM());
delete pointer;
pointer = newOptimizer;
}
VOptimizer::shared_config actual = pointer->config();
delete(pointer);
// get the truth config
boost::shared_ptr<VConfig> truthConfig = stereoExampleTruthConfig();
truthConfig->insert(LagrangeKey(12), Vector_(3, 0.0, 1.0, 1.0));
// check if correct
CHECK(assert_equal(*truthConfig,*actual, 1e-5));
}
/* ************************************************************************* */
int main() { TestResult tr; return TestRegistry::runAllTests(tr); }
/* ************************************************************************* */