113 lines
		
	
	
		
			3.0 KiB
		
	
	
	
		
			C++
		
	
	
			
		
		
	
	
			113 lines
		
	
	
		
			3.0 KiB
		
	
	
	
		
			C++
		
	
	
| /*
 | |
|  * SubgraphPreconditioner.h
 | |
|  * Created on: Dec 31, 2009
 | |
|  * @author: Frank Dellaert
 | |
|  */
 | |
| 
 | |
| #ifndef SUBGRAPHPRECONDITIONER_H_
 | |
| #define SUBGRAPHPRECONDITIONER_H_
 | |
| 
 | |
| #include "GaussianFactorGraph.h"
 | |
| #include "GaussianBayesNet.h"
 | |
| #include "Ordering.h"
 | |
| 
 | |
| namespace gtsam {
 | |
| 
 | |
| 	/**
 | |
| 	 * Subgraph conditioner class, as explained in the RSS 2010 submission.
 | |
| 	 * Starting with a graph A*x=b, we split it in two systems A1*x=b1 and A2*x=b2
 | |
| 	 * We solve R1*x=c1, and make the substitution y=R1*x-c1.
 | |
| 	 * To use the class, give the Bayes Net R1*x=c1 and Graph A2*x=b2.
 | |
| 	 * Then solve for yhat using CG, and solve for xhat = system.x(yhat).
 | |
| 	 */
 | |
| 	class SubgraphPreconditioner {
 | |
| 
 | |
| 	public:
 | |
| 		typedef boost::shared_ptr<const GaussianBayesNet> sharedBayesNet;
 | |
| 		typedef boost::shared_ptr<const GaussianFactorGraph> sharedFG;
 | |
| 		typedef boost::shared_ptr<const VectorConfig> sharedConfig;
 | |
| 		typedef boost::shared_ptr<const Errors> sharedErrors;
 | |
| 
 | |
| 	private:
 | |
| 		sharedBayesNet Rc1_;
 | |
| 		sharedFG Ab2_;
 | |
| 		sharedConfig xbar_;
 | |
| 		sharedErrors b2bar_; /** b2 - A2*xbar */
 | |
| 
 | |
| 	public:
 | |
| 
 | |
| 		/**
 | |
| 		 * Constructor
 | |
| 		 * @param Rc1: the Bayes Net R1*x=c1
 | |
| 		 * @param Ab2: the Graph A2*x=b2
 | |
| 		 * @param xbar: the solution to R1*x=c1
 | |
| 		 */
 | |
| 		SubgraphPreconditioner(sharedBayesNet& Rc1,	sharedFG& Ab2, sharedConfig& xbar);
 | |
| 
 | |
| 		/* x = xbar + inv(R1)*y */
 | |
| 		VectorConfig x(const VectorConfig& y) const;
 | |
| 
 | |
| 		/* error, given y */
 | |
| 		double error(const VectorConfig& y) const;
 | |
| 
 | |
| 		/** gradient = y + inv(R1')*A2'*(A2*inv(R1)*y-b2bar) */
 | |
| 		VectorConfig gradient(const VectorConfig& y) const;
 | |
| 
 | |
| 		/** Apply operator A */
 | |
| 		Errors operator*(const VectorConfig& y) const;
 | |
| 
 | |
| 		/** Apply operator A' */
 | |
| 		VectorConfig operator^(const Errors& e) const;
 | |
| 
 | |
| 		/** print the object */
 | |
| 		void print(const std::string& s = "SubgraphPreconditioner") const;
 | |
| 	};
 | |
| 
 | |
|   /**
 | |
|    * A nonlinear system solver using subgraph preconditioning conjugate gradient
 | |
|    * Concept NonLinearSolver<G,T,L> implements
 | |
|    *   linearize: G * T -> L
 | |
|    *   solve : L -> VectorConfig
 | |
|    */
 | |
| 	template<class G, class T>
 | |
| 	class SubgraphPCG {
 | |
| 
 | |
| 	private:
 | |
| 		typedef typename T::Key Key;
 | |
| 		typedef typename G::Constraint Constraint;
 | |
| 		typedef typename G::Pose Pose;
 | |
| 
 | |
| 		const size_t maxIterations_;
 | |
| 		const bool verbose_;
 | |
| 		const double epsilon_, epsilon_abs_;
 | |
| 
 | |
| 		/* the ordering derived from the spanning tree */
 | |
| 		boost::shared_ptr<Ordering> ordering_;
 | |
| 
 | |
| 		/* the solution computed from the first subgraph */
 | |
| 		boost::shared_ptr<T> theta_bar_;
 | |
| 
 | |
| 		G T_, C_;
 | |
| 
 | |
| 	public:
 | |
| 		SubgraphPCG(const G& g, const T& theta0);
 | |
| 
 | |
| 		boost::shared_ptr<Ordering> ordering() const { return ordering_; }
 | |
| 
 | |
| 		boost::shared_ptr<T> theta_bar() const { return theta_bar_; }
 | |
| 
 | |
| 		/**
 | |
| 		 * linearize the non-linear graph around the current config and build the subgraph preconditioner systme
 | |
| 		 */
 | |
| 		SubgraphPreconditioner linearize(const G& g, const T& theta_bar) const;
 | |
| 
 | |
|   	/**
 | |
|   	 * solve for the optimal displacement in the tangent space, and then solve
 | |
|   	 * the resulted linear system
 | |
|   	 */
 | |
|   	VectorConfig optimize(SubgraphPreconditioner& system) const;
 | |
| 	};
 | |
| } // nsamespace gtsam
 | |
| 
 | |
| #endif /* SUBGRAPHPRECONDITIONER_H_ */
 |