gtsam/gtsam_unstable/examples/FixedLagSmootherExample.cpp

163 lines
7.2 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file FixedLagSmootherExample.cpp
* @brief Demonstration of the fixed-lag smoothers using a planar robot example and multiple odometry-like sensors
* @author Stephen Williams
*/
/**
* A simple 2D pose slam example with multiple odometry-like measurements
* - The robot initially faces along the X axis (horizontal, to the right in 2D)
* - The robot moves forward at 2m/s
* - We have measurements between each pose from multiple odometry sensors
*/
// This example demonstrates the use of the Fixed-Lag Smoothers in GTSAM unstable
#include <gtsam_unstable/nonlinear/BatchFixedLagSmoother.h>
#include <gtsam_unstable/nonlinear/IncrementalFixedLagSmoother.h>
// In GTSAM, measurement functions are represented as 'factors'. Several common factors
// have been provided with the library for solving robotics/SLAM/Bundle Adjustment problems.
// Here we will use Between factors for the relative motion described by odometry measurements.
// Also, we will initialize the robot at the origin using a Prior factor.
#include <gtsam/slam/BetweenFactor.h>
// When the factors are created, we will add them to a Factor Graph. As the factors we are using
// are nonlinear factors, we will need a Nonlinear Factor Graph.
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
// The nonlinear solvers within GTSAM are iterative solvers, meaning they linearize the
// nonlinear functions around an initial linearization point, then solve the linear system
// to update the linearization point. This happens repeatedly until the solver converges
// to a consistent set of variable values. This requires us to specify an initial guess
// for each variable, held in a Values container.
#include <gtsam/nonlinear/Values.h>
// We will use simple integer Keys to uniquely identify each robot pose.
#include <gtsam/inference/Key.h>
// We will use Pose2 variables (x, y, theta) to represent the robot positions
#include <gtsam/geometry/Pose2.h>
#include <iomanip>
using namespace std;
using namespace gtsam;
int main(int argc, char** argv) {
// Define the smoother lag (in seconds)
double lag = 2.0;
// Create a fixed lag smoother
// The Batch version uses Levenberg-Marquardt to perform the nonlinear optimization
BatchFixedLagSmoother smootherBatch(lag);
// The Incremental version uses iSAM2 to perform the nonlinear optimization
ISAM2Params parameters;
parameters.relinearizeThreshold = 0.0; // Set the relin threshold to zero such that the batch estimate is recovered
parameters.relinearizeSkip = 1; // Relinearize every time
IncrementalFixedLagSmoother smootherISAM2(lag, parameters);
// Create containers to store the factors and linearization points that
// will be sent to the smoothers
NonlinearFactorGraph newFactors;
Values newValues;
FixedLagSmoother::KeyTimestampMap newTimestamps;
// Create a prior on the first pose, placing it at the origin
Pose2 priorMean(0.0, 0.0, 0.0); // prior at origin
noiseModel::Diagonal::shared_ptr priorNoise = noiseModel::Diagonal::Sigmas(Vector3(0.3, 0.3, 0.1));
Key priorKey = 0;
newFactors.addPrior(priorKey, priorMean, priorNoise);
newValues.insert(priorKey, priorMean); // Initialize the first pose at the mean of the prior
newTimestamps[priorKey] = 0.0; // Set the timestamp associated with this key to 0.0 seconds;
// Now, loop through several time steps, creating factors from different "sensors"
// and adding them to the fixed-lag smoothers
double deltaT = 0.25;
for(double time = deltaT; time <= 3.0; time += deltaT) {
// Define the keys related to this timestamp
Key previousKey(1000 * (time-deltaT));
Key currentKey(1000 * (time));
// Assign the current key to the current timestamp
newTimestamps[currentKey] = time;
// Add a guess for this pose to the new values
// Since the robot moves forward at 2 m/s, then the position is simply: time[s]*2.0[m/s]
// {This is not a particularly good way to guess, but this is just an example}
Pose2 currentPose(time * 2.0, 0.0, 0.0);
newValues.insert(currentKey, currentPose);
// Add odometry factors from two different sources with different error stats
Pose2 odometryMeasurement1 = Pose2(0.61, -0.08, 0.02);
noiseModel::Diagonal::shared_ptr odometryNoise1 = noiseModel::Diagonal::Sigmas(Vector3(0.1, 0.1, 0.05));
newFactors.push_back(BetweenFactor<Pose2>(previousKey, currentKey, odometryMeasurement1, odometryNoise1));
Pose2 odometryMeasurement2 = Pose2(0.47, 0.03, 0.01);
noiseModel::Diagonal::shared_ptr odometryNoise2 = noiseModel::Diagonal::Sigmas(Vector3(0.05, 0.05, 0.05));
newFactors.push_back(BetweenFactor<Pose2>(previousKey, currentKey, odometryMeasurement2, odometryNoise2));
// Update the smoothers with the new factors. In this example, batch smoother needs one iteration
// to accurately converge. The ISAM smoother doesn't, but we only start getting estiates when
// both are ready for simplicity.
if (time >= 0.50) {
smootherBatch.update(newFactors, newValues, newTimestamps);
smootherISAM2.update(newFactors, newValues, newTimestamps);
for(size_t i = 1; i < 2; ++i) { // Optionally perform multiple iSAM2 iterations
smootherISAM2.update();
}
// Print the optimized current pose
cout << setprecision(5) << "Timestamp = " << time << endl;
smootherBatch.calculateEstimate<Pose2>(currentKey).print("Batch Estimate:");
smootherISAM2.calculateEstimate<Pose2>(currentKey).print("iSAM2 Estimate:");
cout << endl;
// Clear contains for the next iteration
newTimestamps.clear();
newValues.clear();
newFactors.resize(0);
}
}
// And to demonstrate the fixed-lag aspect, print the keys contained in each smoother after 3.0 seconds
cout << "After 3.0 seconds, " << endl;
cout << " Batch Smoother Keys: " << endl;
for(const FixedLagSmoother::KeyTimestampMap::value_type& key_timestamp: smootherBatch.timestamps()) {
cout << setprecision(5) << " Key: " << key_timestamp.first << " Time: " << key_timestamp.second << endl;
}
cout << " iSAM2 Smoother Keys: " << endl;
for(const FixedLagSmoother::KeyTimestampMap::value_type& key_timestamp: smootherISAM2.timestamps()) {
cout << setprecision(5) << " Key: " << key_timestamp.first << " Time: " << key_timestamp.second << endl;
}
// Here is an example of how to get the full Jacobian of the problem.
// First, get the linearization point.
Values result = smootherISAM2.calculateEstimate();
// Get the factor graph
auto &factorGraph = smootherISAM2.getFactors();
// Linearize to a Gaussian factor graph
boost::shared_ptr<GaussianFactorGraph> linearGraph = factorGraph.linearize(result);
// Converts the linear graph into a Jacobian factor and extracts the Jacobian matrix
Matrix jacobian = linearGraph->jacobian().first;
cout << " Jacobian: " << jacobian << endl;
return 0;
}