gtsam/gtsam/slam/tests/testGeneralSFMFactor.cpp

532 lines
18 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file testGeneralSFMFactor.cpp
* @date Dec 27, 2010
* @author nikai
* @brief unit tests for GeneralSFMFactor
*/
#include <gtsam/slam/GeneralSFMFactor.h>
#include <gtsam/sam/RangeFactor.h>
#include <gtsam/geometry/Cal3_S2.h>
#include <gtsam/geometry/Rot2.h>
#include <gtsam/geometry/PinholeCamera.h>
#include <gtsam/nonlinear/NonlinearEquality.h>
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
#include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h>
#include <gtsam/linear/VectorValues.h>
#include <gtsam/inference/Symbol.h>
#include <gtsam/base/Testable.h>
#include <boost/assign/std/vector.hpp>
#include <boost/shared_ptr.hpp>
#include <CppUnitLite/TestHarness.h>
using namespace boost::assign;
#include <iostream>
#include <vector>
using namespace std;
using namespace gtsam;
// Convenience for named keys
using symbol_shorthand::X;
using symbol_shorthand::L;
typedef PinholeCamera<Cal3_S2> GeneralCamera;
typedef GeneralSFMFactor<GeneralCamera, Point3> Projection;
typedef NonlinearEquality<GeneralCamera> CameraConstraint;
typedef NonlinearEquality<Point3> Point3Constraint;
class Graph: public NonlinearFactorGraph {
public:
void addMeasurement(int i, int j, const Point2& z,
const SharedNoiseModel& model) {
push_back(boost::make_shared<Projection>(z, model, X(i), L(j)));
}
void addCameraConstraint(int j, const GeneralCamera& p) {
boost::shared_ptr<CameraConstraint> factor(new CameraConstraint(X(j), p));
push_back(factor);
}
void addPoint3Constraint(int j, const Point3& p) {
boost::shared_ptr<Point3Constraint> factor(new Point3Constraint(L(j), p));
push_back(factor);
}
};
static double getGaussian() {
double S, V1, V2;
// Use Box-Muller method to create gauss noise from uniform noise
do {
double U1 = rand() / (double) (RAND_MAX);
double U2 = rand() / (double) (RAND_MAX);
V1 = 2 * U1 - 1; /* V1=[-1,1] */
V2 = 2 * U2 - 1; /* V2=[-1,1] */
S = V1 * V1 + V2 * V2;
} while (S >= 1);
return sqrt(-2.f * (double) log(S) / S) * V1;
}
static const SharedNoiseModel sigma1(noiseModel::Unit::Create(2));
static const double baseline = 5.;
/* ************************************************************************* */
static vector<Point3> genPoint3() {
const double z = 5;
vector<Point3> landmarks;
landmarks.push_back(Point3(-1., -1., z));
landmarks.push_back(Point3(-1., 1., z));
landmarks.push_back(Point3(1., 1., z));
landmarks.push_back(Point3(1., -1., z));
landmarks.push_back(Point3(-1.5, -1.5, 1.5 * z));
landmarks.push_back(Point3(-1.5, 1.5, 1.5 * z));
landmarks.push_back(Point3(1.5, 1.5, 1.5 * z));
landmarks.push_back(Point3(1.5, -1.5, 1.5 * z));
landmarks.push_back(Point3(-2., -2., 2 * z));
landmarks.push_back(Point3(-2., 2., 2 * z));
landmarks.push_back(Point3(2., 2., 2 * z));
landmarks.push_back(Point3(2., -2., 2 * z));
return landmarks;
}
static vector<GeneralCamera> genCameraDefaultCalibration() {
vector<GeneralCamera> X;
X.push_back(GeneralCamera(Pose3(Rot3(), Point3(-baseline / 2., 0., 0.))));
X.push_back(GeneralCamera(Pose3(Rot3(), Point3(baseline / 2., 0., 0.))));
return X;
}
static vector<GeneralCamera> genCameraVariableCalibration() {
const Cal3_S2 K(640, 480, 0.1, 320, 240);
vector<GeneralCamera> X;
X.push_back(GeneralCamera(Pose3(Rot3(), Point3(-baseline / 2., 0., 0.)), K));
X.push_back(GeneralCamera(Pose3(Rot3(), Point3(baseline / 2., 0., 0.)), K));
return X;
}
static boost::shared_ptr<Ordering> getOrdering(
const vector<GeneralCamera>& cameras, const vector<Point3>& landmarks) {
boost::shared_ptr<Ordering> ordering(new Ordering);
for (size_t i = 0; i < landmarks.size(); ++i)
ordering->push_back(L(i));
for (size_t i = 0; i < cameras.size(); ++i)
ordering->push_back(X(i));
return ordering;
}
/* ************************************************************************* */
TEST( GeneralSFMFactor, equals ) {
// Create two identical factors and make sure they're equal
Point2 z(323., 240.);
const Symbol cameraFrameNumber('x', 1), landmarkNumber('l', 1);
const SharedNoiseModel sigma(noiseModel::Unit::Create(1));
boost::shared_ptr<Projection> factor1(
new Projection(z, sigma, cameraFrameNumber, landmarkNumber));
boost::shared_ptr<Projection> factor2(
new Projection(z, sigma, cameraFrameNumber, landmarkNumber));
EXPECT(assert_equal(*factor1, *factor2));
}
/* ************************************************************************* */
TEST( GeneralSFMFactor, error ) {
Point2 z(3., 0.);
const SharedNoiseModel sigma(noiseModel::Unit::Create(2));
Projection factor(z, sigma, X(1), L(1));
// For the following configuration, the factor predicts 320,240
Values values;
Rot3 R;
Point3 t1(0, 0, -6);
Pose3 x1(R, t1);
values.insert(X(1), GeneralCamera(x1));
Point3 l1(0,0,0);
values.insert(L(1), l1);
EXPECT(
assert_equal(((Vector ) Vector2(-3., 0.)),
factor.unwhitenedError(values)));
}
/* ************************************************************************* */
TEST( GeneralSFMFactor, optimize_defaultK ) {
vector<Point3> landmarks = genPoint3();
vector<GeneralCamera> cameras = genCameraDefaultCalibration();
// add measurement with noise
Graph graph;
for (size_t j = 0; j < cameras.size(); ++j) {
for (size_t i = 0; i < landmarks.size(); ++i) {
Point2 pt = cameras[j].project(landmarks[i]);
graph.addMeasurement(j, i, pt, sigma1);
}
}
const size_t nMeasurements = cameras.size() * landmarks.size();
// add initial
const double noise = baseline * 0.1;
Values values;
for (size_t i = 0; i < cameras.size(); ++i)
values.insert(X(i), cameras[i]);
for (size_t i = 0; i < landmarks.size(); ++i) {
Point3 pt(landmarks[i].x() + noise * getGaussian(),
landmarks[i].y() + noise * getGaussian(),
landmarks[i].z() + noise * getGaussian());
values.insert(L(i), pt);
}
graph.addCameraConstraint(0, cameras[0]);
// Create an ordering of the variables
Ordering ordering = *getOrdering(cameras, landmarks);
LevenbergMarquardtOptimizer optimizer(graph, values, ordering);
Values final = optimizer.optimize();
EXPECT(optimizer.error() < 0.5 * 1e-5 * nMeasurements);
}
/* ************************************************************************* */
TEST( GeneralSFMFactor, optimize_varK_SingleMeasurementError ) {
vector<Point3> landmarks = genPoint3();
vector<GeneralCamera> cameras = genCameraVariableCalibration();
// add measurement with noise
Graph graph;
for (size_t j = 0; j < cameras.size(); ++j) {
for (size_t i = 0; i < landmarks.size(); ++i) {
Point2 pt = cameras[j].project(landmarks[i]);
graph.addMeasurement(j, i, pt, sigma1);
}
}
const size_t nMeasurements = cameras.size() * landmarks.size();
// add initial
const double noise = baseline * 0.1;
Values values;
for (size_t i = 0; i < cameras.size(); ++i)
values.insert(X(i), cameras[i]);
// add noise only to the first landmark
for (size_t i = 0; i < landmarks.size(); ++i) {
if (i == 0) {
Point3 pt(landmarks[i].x() + noise * getGaussian(),
landmarks[i].y() + noise * getGaussian(),
landmarks[i].z() + noise * getGaussian());
values.insert(L(i), pt);
} else {
values.insert(L(i), landmarks[i]);
}
}
graph.addCameraConstraint(0, cameras[0]);
const double reproj_error = 1e-5;
Ordering ordering = *getOrdering(cameras, landmarks);
LevenbergMarquardtOptimizer optimizer(graph, values, ordering);
Values final = optimizer.optimize();
EXPECT(optimizer.error() < 0.5 * reproj_error * nMeasurements);
}
/* ************************************************************************* */
TEST( GeneralSFMFactor, optimize_varK_FixCameras ) {
vector<Point3> landmarks = genPoint3();
vector<GeneralCamera> cameras = genCameraVariableCalibration();
// add measurement with noise
const double noise = baseline * 0.1;
Graph graph;
for (size_t i = 0; i < cameras.size(); ++i) {
for (size_t j = 0; j < landmarks.size(); ++j) {
Point2 z = cameras[i].project(landmarks[j]);
graph.addMeasurement(i, j, z, sigma1);
}
}
const size_t nMeasurements = landmarks.size() * cameras.size();
Values values;
for (size_t i = 0; i < cameras.size(); ++i)
values.insert(X(i), cameras[i]);
for (size_t j = 0; j < landmarks.size(); ++j) {
Point3 pt(landmarks[j].x() + noise * getGaussian(),
landmarks[j].y() + noise * getGaussian(),
landmarks[j].z() + noise * getGaussian());
values.insert(L(j), pt);
}
for (size_t i = 0; i < cameras.size(); ++i)
graph.addCameraConstraint(i, cameras[i]);
const double reproj_error = 1e-5;
Ordering ordering = *getOrdering(cameras, landmarks);
LevenbergMarquardtOptimizer optimizer(graph, values, ordering);
Values final = optimizer.optimize();
EXPECT(optimizer.error() < 0.5 * reproj_error * nMeasurements);
}
/* ************************************************************************* */
TEST( GeneralSFMFactor, optimize_varK_FixLandmarks ) {
vector<Point3> landmarks = genPoint3();
vector<GeneralCamera> cameras = genCameraVariableCalibration();
// add measurement with noise
Graph graph;
for (size_t j = 0; j < cameras.size(); ++j) {
for (size_t i = 0; i < landmarks.size(); ++i) {
Point2 pt = cameras[j].project(landmarks[i]);
graph.addMeasurement(j, i, pt, sigma1);
}
}
const size_t nMeasurements = landmarks.size() * cameras.size();
Values values;
for (size_t i = 0; i < cameras.size(); ++i) {
const double rot_noise = 1e-5, trans_noise = 1e-3, focal_noise = 1,
skew_noise = 1e-5;
if (i == 0) {
values.insert(X(i), cameras[i]);
} else {
Vector delta = (Vector(11) << rot_noise, rot_noise, rot_noise, // rotation
trans_noise, trans_noise, trans_noise, // translation
focal_noise, focal_noise, // f_x, f_y
skew_noise, // s
trans_noise, trans_noise // ux, uy
).finished();
values.insert(X(i), cameras[i].retract(delta));
}
}
for (size_t i = 0; i < landmarks.size(); ++i) {
values.insert(L(i), landmarks[i]);
}
// fix X0 and all landmarks, allow only the cameras[1] to move
graph.addCameraConstraint(0, cameras[0]);
for (size_t i = 0; i < landmarks.size(); ++i)
graph.addPoint3Constraint(i, landmarks[i]);
const double reproj_error = 1e-5;
Ordering ordering = *getOrdering(cameras, landmarks);
LevenbergMarquardtOptimizer optimizer(graph, values, ordering);
Values final = optimizer.optimize();
EXPECT(optimizer.error() < 0.5 * reproj_error * nMeasurements);
}
/* ************************************************************************* */
TEST( GeneralSFMFactor, optimize_varK_BA ) {
vector<Point3> landmarks = genPoint3();
vector<GeneralCamera> cameras = genCameraVariableCalibration();
// add measurement with noise
Graph graph;
for (size_t j = 0; j < cameras.size(); ++j) {
for (size_t i = 0; i < landmarks.size(); ++i) {
Point2 pt = cameras[j].project(landmarks[i]);
graph.addMeasurement(j, i, pt, sigma1);
}
}
const size_t nMeasurements = cameras.size() * landmarks.size();
// add initial
const double noise = baseline * 0.1;
Values values;
for (size_t i = 0; i < cameras.size(); ++i)
values.insert(X(i), cameras[i]);
// add noise only to the first landmark
for (size_t i = 0; i < landmarks.size(); ++i) {
Point3 pt(landmarks[i].x() + noise * getGaussian(),
landmarks[i].y() + noise * getGaussian(),
landmarks[i].z() + noise * getGaussian());
values.insert(L(i), pt);
}
// Constrain position of system with the first camera constrained to the origin
graph.addCameraConstraint(0, cameras[0]);
// Constrain the scale of the problem with a soft range factor of 1m between the cameras
graph.emplace_shared<
RangeFactor<GeneralCamera, GeneralCamera> >(X(0), X(1), 2.,
noiseModel::Isotropic::Sigma(1, 10.));
const double reproj_error = 1e-5;
Ordering ordering = *getOrdering(cameras, landmarks);
LevenbergMarquardtOptimizer optimizer(graph, values, ordering);
Values final = optimizer.optimize();
EXPECT(optimizer.error() < 0.5 * reproj_error * nMeasurements);
}
/* ************************************************************************* */
TEST(GeneralSFMFactor, GeneralCameraPoseRange) {
// Tests range factor between a GeneralCamera and a Pose3
Graph graph;
graph.addCameraConstraint(0, GeneralCamera());
graph.emplace_shared<
RangeFactor<GeneralCamera, Pose3> >(X(0), X(1), 2.,
noiseModel::Isotropic::Sigma(1, 1.));
graph.addPrior(X(1), Pose3(Rot3(), Point3(1., 0., 0.)),
noiseModel::Isotropic::Sigma(6, 1.));
Values init;
init.insert(X(0), GeneralCamera());
init.insert(X(1), Pose3(Rot3(), Point3(1., 1., 1.)));
// The optimal value between the 2m range factor and 1m prior is 1.5m
Values expected;
expected.insert(X(0), GeneralCamera());
expected.insert(X(1), Pose3(Rot3(), Point3(1.5, 0., 0.)));
LevenbergMarquardtParams params;
params.absoluteErrorTol = 1e-9;
params.relativeErrorTol = 1e-9;
Values actual = LevenbergMarquardtOptimizer(graph, init, params).optimize();
EXPECT(assert_equal(expected, actual, 1e-4));
}
/* ************************************************************************* */
TEST(GeneralSFMFactor, CalibratedCameraPoseRange) {
// Tests range factor between a CalibratedCamera and a Pose3
NonlinearFactorGraph graph;
graph.addPrior(X(0), CalibratedCamera(),
noiseModel::Isotropic::Sigma(6, 1.));
graph.emplace_shared<
RangeFactor<CalibratedCamera, Pose3> >(X(0), X(1), 2.,
noiseModel::Isotropic::Sigma(1, 1.));
graph.addPrior(X(1), Pose3(Rot3(), Point3(1., 0., 0.)),
noiseModel::Isotropic::Sigma(6, 1.));
Values init;
init.insert(X(0), CalibratedCamera());
init.insert(X(1), Pose3(Rot3(), Point3(1., 1., 1.)));
Values expected;
expected.insert(X(0),
CalibratedCamera(Pose3(Rot3(), Point3(-0.333333333333, 0, 0))));
expected.insert(X(1), Pose3(Rot3(), Point3(1.333333333333, 0, 0)));
LevenbergMarquardtParams params;
params.absoluteErrorTol = 1e-9;
params.relativeErrorTol = 1e-9;
Values actual = LevenbergMarquardtOptimizer(graph, init, params).optimize();
EXPECT(assert_equal(expected, actual, 1e-4));
}
/* ************************************************************************* */
// Frank created these tests after switching to a custom LinearizedFactor
TEST(GeneralSFMFactor, BinaryJacobianFactor) {
Point2 measurement(3., -1.);
// Create Values
Values values;
Rot3 R;
Point3 t1(0, 0, -6);
Pose3 x1(R, t1);
values.insert(X(1), GeneralCamera(x1));
Point3 l1(0,0,0);
values.insert(L(1), l1);
vector<SharedNoiseModel> models;
{
// Create various noise-models to test all cases
using namespace noiseModel;
Rot2 R = Rot2::fromAngle(0.3);
Matrix2 cov = R.matrix() * R.matrix().transpose();
models += SharedNoiseModel(), Unit::Create(2), //
Isotropic::Sigma(2, 0.5), Constrained::All(2), Gaussian::Covariance(cov);
}
// Now loop over all these noise models
for(SharedNoiseModel model: models) {
Projection factor(measurement, model, X(1), L(1));
// Test linearize
GaussianFactor::shared_ptr expected = //
factor.NoiseModelFactor::linearize(values);
GaussianFactor::shared_ptr actual = factor.linearize(values);
EXPECT(assert_equal(*expected, *actual, 1e-9));
// Test methods that rely on updateHessian
if (model && !model->isConstrained()) {
// Construct HessianFactor from single JacobianFactor
HessianFactor expectedHessian(*expected), actualHessian(*actual);
EXPECT(assert_equal(expectedHessian, actualHessian, 1e-9));
// Convert back
JacobianFactor actualJacobian(actualHessian);
// Note we do not expect the actualJacobian to match *expected
// Just that they have the same information on the variable.
EXPECT(
assert_equal(expected->augmentedInformation(),
actualJacobian.augmentedInformation(), 1e-9));
// Construct from GaussianFactorGraph
GaussianFactorGraph gfg1;
gfg1 += expected;
GaussianFactorGraph gfg2;
gfg2 += actual;
HessianFactor hessian1(gfg1), hessian2(gfg2);
EXPECT(assert_equal(hessian1, hessian2, 1e-9));
}
}
}
/* ************************************************************************* */
// Do a thorough test of BinaryJacobianFactor
TEST( GeneralSFMFactor, BinaryJacobianFactor2 ) {
vector<Point3> landmarks = genPoint3();
vector<GeneralCamera> cameras = genCameraVariableCalibration();
Values values;
for (size_t i = 0; i < cameras.size(); ++i)
values.insert(X(i), cameras[i]);
for (size_t j = 0; j < landmarks.size(); ++j)
values.insert(L(j), landmarks[j]);
for (size_t i = 0; i < cameras.size(); ++i) {
for (size_t j = 0; j < landmarks.size(); ++j) {
Point2 z = cameras[i].project(landmarks[j]);
Projection::shared_ptr nonlinear = //
boost::make_shared<Projection>(z, sigma1, X(i), L(j));
GaussianFactor::shared_ptr factor = nonlinear->linearize(values);
HessianFactor hessian(*factor);
JacobianFactor jacobian(hessian);
EXPECT(
assert_equal(factor->augmentedInformation(),
jacobian.augmentedInformation(), 1e-9));
}
}
}
/* ************************************************************************* */
int main() {
TestResult tr;
return TestRegistry::runAllTests(tr);
}
/* ************************************************************************* */