133 lines
5.1 KiB
C++
133 lines
5.1 KiB
C++
/* ----------------------------------------------------------------------------
|
|
|
|
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
|
* Atlanta, Georgia 30332-0415
|
|
* All Rights Reserved
|
|
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
|
|
|
* See LICENSE for the license information
|
|
|
|
* -------------------------------------------------------------------------- */
|
|
|
|
/**
|
|
* @file SFMExample_SmartFactor.cpp
|
|
* @brief A structure-from-motion problem on a simulated dataset, using smart projection factor
|
|
* @author Duy-Nguyen Ta
|
|
* @author Jing Dong
|
|
* @author Frank Dellaert
|
|
*/
|
|
|
|
// In GTSAM, measurement functions are represented as 'factors'.
|
|
// The factor we used here is SmartProjectionPoseFactor.
|
|
// Every smart factor represent a single landmark, seen from multiple cameras.
|
|
// The SmartProjectionPoseFactor only optimizes for the poses of a camera,
|
|
// not the calibration, which is assumed known.
|
|
#include <gtsam/slam/SmartProjectionPoseFactor.h>
|
|
|
|
// For an explanation of these headers, see SFMExample.cpp
|
|
#include "SFMdata.h"
|
|
#include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h>
|
|
|
|
using namespace std;
|
|
using namespace gtsam;
|
|
|
|
// Make the typename short so it looks much cleaner
|
|
typedef SmartProjectionPoseFactor<Cal3_S2> SmartFactor;
|
|
|
|
// create a typedef to the camera type
|
|
typedef PinholePose<Cal3_S2> Camera;
|
|
|
|
/* ************************************************************************* */
|
|
int main(int argc, char* argv[]) {
|
|
|
|
// Define the camera calibration parameters
|
|
Cal3_S2::shared_ptr K(new Cal3_S2(50.0, 50.0, 0.0, 50.0, 50.0));
|
|
|
|
// Define the camera observation noise model
|
|
noiseModel::Isotropic::shared_ptr measurementNoise =
|
|
noiseModel::Isotropic::Sigma(2, 1.0); // one pixel in u and v
|
|
|
|
// Create the set of ground-truth landmarks and poses
|
|
vector<Point3> points = createPoints();
|
|
vector<Pose3> poses = createPoses();
|
|
|
|
// Create a factor graph
|
|
NonlinearFactorGraph graph;
|
|
|
|
// Simulated measurements from each camera pose, adding them to the factor graph
|
|
for (size_t j = 0; j < points.size(); ++j) {
|
|
|
|
// every landmark represent a single landmark, we use shared pointer to init the factor, and then insert measurements.
|
|
SmartFactor::shared_ptr smartfactor(new SmartFactor(measurementNoise, K));
|
|
|
|
for (size_t i = 0; i < poses.size(); ++i) {
|
|
|
|
// generate the 2D measurement
|
|
Camera camera(poses[i], K);
|
|
Point2 measurement = camera.project(points[j]);
|
|
|
|
// call add() function to add measurement into a single factor, here we need to add:
|
|
// 1. the 2D measurement
|
|
// 2. the corresponding camera's key
|
|
// 3. camera noise model
|
|
// 4. camera calibration
|
|
smartfactor->add(measurement, i);
|
|
}
|
|
|
|
// insert the smart factor in the graph
|
|
graph.push_back(smartfactor);
|
|
}
|
|
|
|
// Add a prior on pose x0. This indirectly specifies where the origin is.
|
|
// 30cm std on x,y,z 0.1 rad on roll,pitch,yaw
|
|
noiseModel::Diagonal::shared_ptr noise = noiseModel::Diagonal::Sigmas(
|
|
(Vector(6) << Vector3::Constant(0.1), Vector3::Constant(0.3)).finished());
|
|
graph.addPrior(0, poses[0], noise);
|
|
|
|
// Because the structure-from-motion problem has a scale ambiguity, the problem is
|
|
// still under-constrained. Here we add a prior on the second pose x1, so this will
|
|
// fix the scale by indicating the distance between x0 and x1.
|
|
// Because these two are fixed, the rest of the poses will be also be fixed.
|
|
graph.addPrior(1, poses[1], noise); // add directly to graph
|
|
|
|
graph.print("Factor Graph:\n");
|
|
|
|
// Create the initial estimate to the solution
|
|
// Intentionally initialize the variables off from the ground truth
|
|
Values initialEstimate;
|
|
Pose3 delta(Rot3::Rodrigues(-0.1, 0.2, 0.25), Point3(0.05, -0.10, 0.20));
|
|
for (size_t i = 0; i < poses.size(); ++i)
|
|
initialEstimate.insert(i, poses[i].compose(delta));
|
|
initialEstimate.print("Initial Estimates:\n");
|
|
|
|
// Optimize the graph and print results
|
|
LevenbergMarquardtOptimizer optimizer(graph, initialEstimate);
|
|
Values result = optimizer.optimize();
|
|
result.print("Final results:\n");
|
|
|
|
// A smart factor represent the 3D point inside the factor, not as a variable.
|
|
// The 3D position of the landmark is not explicitly calculated by the optimizer.
|
|
// To obtain the landmark's 3D position, we use the "point" method of the smart factor.
|
|
Values landmark_result;
|
|
for (size_t j = 0; j < points.size(); ++j) {
|
|
|
|
// The graph stores Factor shared_ptrs, so we cast back to a SmartFactor first
|
|
SmartFactor::shared_ptr smart = boost::dynamic_pointer_cast<SmartFactor>(graph[j]);
|
|
if (smart) {
|
|
// The output of point() is in boost::optional<Point3>, as sometimes
|
|
// the triangulation operation inside smart factor will encounter degeneracy.
|
|
boost::optional<Point3> point = smart->point(result);
|
|
if (point) // ignore if boost::optional return nullptr
|
|
landmark_result.insert(j, *point);
|
|
}
|
|
}
|
|
|
|
landmark_result.print("Landmark results:\n");
|
|
cout << "final error: " << graph.error(result) << endl;
|
|
cout << "number of iterations: " << optimizer.iterations() << endl;
|
|
|
|
return 0;
|
|
}
|
|
/* ************************************************************************* */
|
|
|