gtsam/examples/matlab/PlanarSLAMExample_easy.m

76 lines
2.7 KiB
Matlab

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% GTSAM Copyright 2010, Georgia Tech Research Corporation,
% Atlanta, Georgia 30332-0415
% All Rights Reserved
% Authors: Frank Dellaert, et al. (see THANKS for the full author list)
%
% See LICENSE for the license information
%
% @brief Simple robotics example using the pre-built planar SLAM domain
% @author Alex Cunningham
% @author Frank Dellaert
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Assumptions
% - All values are axis aligned
% - Robot poses are facing along the X axis (horizontal, to the right in images)
% - We have bearing and range information for measurements
% - We have full odometry for measurements
% - The robot and landmarks are on a grid, moving 2 meters each step
% - Landmarks are 2 meters away from the robot trajectory
%% Create keys for variables
x1 = symbol('x',1); x2 = symbol('x',2); x3 = symbol('x',3);
l1 = symbol('l',1); l2 = symbol('l',2);
%% Create graph container and add factors to it
graph = planarSLAMGraph;
%% Add prior
% gaussian for prior
priorNoise = gtsamSharedNoiseModel_Sigmas([0.3; 0.3; 0.1]);
priorMean = gtsamPose2(0.0, 0.0, 0.0); % prior at origin
graph.addPrior(x1, priorMean, priorNoise); % add directly to graph
%% Add odometry
% general noisemodel for odometry
odometryNoise = gtsamSharedNoiseModel_Sigmas([0.2; 0.2; 0.1]);
odometry = gtsamPose2(2.0, 0.0, 0.0); % create a measurement for both factors (the same in this case)
graph.addOdometry(x1, x2, odometry, odometryNoise);
graph.addOdometry(x2, x3, odometry, odometryNoise);
%% Add measurements
% general noisemodel for measurements
meas_model = gtsamSharedNoiseModel_Sigmas([0.1; 0.2]);
% create the measurement values - indices are (pose id, landmark id)
degrees = pi/180;
bearing11 = gtsamRot2(45*degrees);
bearing21 = gtsamRot2(90*degrees);
bearing32 = gtsamRot2(90*degrees);
range11 = sqrt(4+4);
range21 = 2.0;
range32 = 2.0;
% % create bearing/range factors and add them
graph.addBearingRange(x1, l1, bearing11, range11, meas_model);
graph.addBearingRange(x2, l1, bearing21, range21, meas_model);
graph.addBearingRange(x3, l2, bearing32, range32, meas_model);
% print
graph.print('full graph');
%% Initialize to noisy points
initialEstimate = planarSLAMValues;
initialEstimate.insertPose(x1, gtsamPose2(0.5, 0.0, 0.2));
initialEstimate.insertPose(x2, gtsamPose2(2.3, 0.1,-0.2));
initialEstimate.insertPose(x3, gtsamPose2(4.1, 0.1, 0.1));
initialEstimate.insertPoint(l1, gtsamPoint2(1.8, 2.1));
initialEstimate.insertPoint(l2, gtsamPoint2(4.1, 1.8));
initialEstimate.print('initial estimate');
%% Optimize using Levenberg-Marquardt optimization with an ordering from colamd
result = graph.optimize(initialEstimate);
result.print('final result');