gtsam/gtsam_unstable/dynamics/Pendulum.h

231 lines
8.5 KiB
C++

/**
* @file Pendulum.h
* @brief Three-way factors for the pendulum dynamics as in [Stern06siggraph] for
* (1) explicit Euler method, (2) implicit Euler method, and (3) sympletic Euler method.
* Note that all methods use the same formulas for the factors. They are only different in
* the way we connect variables using those factors in the graph.
* @author Duy-Nguyen Ta
*/
#pragma once
#include <gtsam/nonlinear/NonlinearFactor.h>
namespace gtsam {
//*************************************************************************
/**
* This class implements the first constraint.
* - For explicit Euler method: q_{k+1} = q_k + h*v_k
* - For implicit Euler method: q_{k+1} = q_k + h*v_{k+1}
* - For sympletic Euler method: q_{k+1} = q_k + h*v_{k+1}
*/
class PendulumFactor1: public NoiseModelFactorN<double, double, double> {
public:
protected:
typedef NoiseModelFactorN<double, double, double> Base;
/** default constructor to allow for serialization */
PendulumFactor1() {}
double h_; // time step
public:
// Provide access to the Matrix& version of evaluateError:
using Base::evaluateError;
typedef boost::shared_ptr<PendulumFactor1> shared_ptr;
///Constructor. k1: q_{k+1}, k: q_k, velKey: velocity variable depending on the chosen method, h: time step
PendulumFactor1(Key k1, Key k, Key velKey, double h, double mu = 1000.0)
: Base(noiseModel::Constrained::All(1, std::abs(mu)), k1, k, velKey), h_(h) {}
/// @return a deep copy of this factor
gtsam::NonlinearFactor::shared_ptr clone() const override {
return boost::static_pointer_cast<gtsam::NonlinearFactor>(
gtsam::NonlinearFactor::shared_ptr(new PendulumFactor1(*this))); }
/** q_k + h*v - q_k1 = 0, with optional derivatives */
Vector evaluateError(const double& qk1, const double& qk, const double& v,
OptionalMatrixType H1, OptionalMatrixType H2,
OptionalMatrixType H3) const override {
const size_t p = 1;
if (H1) *H1 = -Matrix::Identity(p,p);
if (H2) *H2 = Matrix::Identity(p,p);
if (H3) *H3 = Matrix::Identity(p,p)*h_;
return (Vector(1) << qk+v*h_-qk1).finished();
}
}; // \PendulumFactor1
//*************************************************************************
/**
* This class implements the second constraint the
* - For explicit Euler method: v_{k+1} = v_k - h*g/L*sin(q_k)
* - For implicit Euler method: v_{k+1} = v_k - h*g/L*sin(q_{k+1})
* - For sympletic Euler method: v_{k+1} = v_k - h*g/L*sin(q_k)
*/
class PendulumFactor2: public NoiseModelFactorN<double, double, double> {
public:
protected:
typedef NoiseModelFactorN<double, double, double> Base;
/** default constructor to allow for serialization */
PendulumFactor2() {}
double h_;
double g_;
double r_;
public:
// Provide access to the Matrix& version of evaluateError:
using Base::evaluateError;
typedef boost::shared_ptr<PendulumFactor2 > shared_ptr;
///Constructor. vk1: v_{k+1}, vk: v_k, qkey: q's key depending on the chosen method, h: time step
PendulumFactor2(Key vk1, Key vk, Key qkey, double h, double r = 1.0, double g = 9.81, double mu = 1000.0)
: Base(noiseModel::Constrained::All(1, std::abs(mu)), vk1, vk, qkey), h_(h), g_(g), r_(r) {}
/// @return a deep copy of this factor
gtsam::NonlinearFactor::shared_ptr clone() const override {
return boost::static_pointer_cast<gtsam::NonlinearFactor>(
gtsam::NonlinearFactor::shared_ptr(new PendulumFactor2(*this))); }
/** v_k - h*g/L*sin(q) - v_k1 = 0, with optional derivatives */
Vector evaluateError(const double & vk1, const double & vk, const double & q,
OptionalMatrixType H1, OptionalMatrixType H2,
OptionalMatrixType H3) const override {
const size_t p = 1;
if (H1) *H1 = -Matrix::Identity(p,p);
if (H2) *H2 = Matrix::Identity(p,p);
if (H3) *H3 = -Matrix::Identity(p,p)*h_*g_/r_*cos(q);
return (Vector(1) << vk - h_ * g_ / r_ * sin(q) - vk1).finished();
}
}; // \PendulumFactor2
//*************************************************************************
/**
* This class implements the first position-momentum update rule
* \f$ p_k = -D_1 L_d(q_k,q_{k+1},h) = \frac{1}{h}mr^{2}\left(q_{k+1}-q_{k}\right)+mgrh(1-\alpha)\,\sin\left((1-\alpha)q_{k}+\alpha q_{k+1}\right) \f$
* \f$ = (1/h)mr^2 (q_{k+1}-q_k) + mgrh(1-alpha) sin ((1-alpha)q_k+\alpha q_{k+1}) \f$
*/
class PendulumFactorPk: public NoiseModelFactorN<double, double, double> {
public:
protected:
typedef NoiseModelFactorN<double, double, double> Base;
/** default constructor to allow for serialization */
PendulumFactorPk() {}
double h_; //! time step
double m_; //! mass
double r_; //! length
double g_; //! gravity
double alpha_; //! in [0,1], define the mid-point between [q_k,q_{k+1}] for approximation. The sympletic rule above can be obtained as a special case when alpha = 0.
public:
// Provide access to the Matrix& version of evaluateError:
using Base::evaluateError;
typedef boost::shared_ptr<PendulumFactorPk > shared_ptr;
///Constructor
PendulumFactorPk(Key pKey, Key qKey, Key qKey1,
double h, double m = 1.0, double r = 1.0, double g = 9.81, double alpha = 0.0, double mu = 1000.0)
: Base(noiseModel::Constrained::All(1, std::abs(mu)), pKey, qKey, qKey1),
h_(h), m_(m), r_(r), g_(g), alpha_(alpha) {}
/// @return a deep copy of this factor
gtsam::NonlinearFactor::shared_ptr clone() const override {
return boost::static_pointer_cast<gtsam::NonlinearFactor>(
gtsam::NonlinearFactor::shared_ptr(new PendulumFactorPk(*this))); }
/** 1/h mr^2 (qk1-qk)+mgrh (1-a) sin((1-a)pk + a*pk1) - pk = 0, with optional derivatives */
Vector evaluateError(const double & pk, const double & qk, const double & qk1,
OptionalMatrixType H1, OptionalMatrixType H2,
OptionalMatrixType H3) const override {
const size_t p = 1;
double qmid = (1-alpha_)*qk + alpha_*qk1;
double mr2_h = 1/h_*m_*r_*r_;
double mgrh = m_*g_*r_*h_;
if (H1) *H1 = -Matrix::Identity(p,p);
if (H2) *H2 = Matrix::Identity(p,p)*(-mr2_h + mgrh*(1-alpha_)*(1-alpha_)*cos(qmid));
if (H3) *H3 = Matrix::Identity(p,p)*( mr2_h + mgrh*(1-alpha_)*(alpha_)*cos(qmid));
return (Vector(1) << mr2_h * (qk1 - qk) + mgrh * (1 - alpha_) * sin(qmid) - pk).finished();
}
}; // \PendulumFactorPk
//*************************************************************************
/**
* This class implements the second position-momentum update rule
* \f$ p_k1 = D_2 L_d(q_k,q_{k+1},h) = \frac{1}{h}mr^{2}\left(q_{k+1}-q_{k}\right)-mgrh\alpha\sin\left((1-\alpha)q_{k}+\alpha q_{k+1}\right) \f$
* \f$ = (1/h)mr^2 (q_{k+1}-q_k) - mgrh alpha sin ((1-alpha)q_k+\alpha q_{k+1}) \f$
*/
class PendulumFactorPk1: public NoiseModelFactorN<double, double, double> {
public:
protected:
typedef NoiseModelFactorN<double, double, double> Base;
/** default constructor to allow for serialization */
PendulumFactorPk1() {}
double h_; //! time step
double m_; //! mass
double r_; //! length
double g_; //! gravity
double alpha_; //! in [0,1], define the mid-point between [q_k,q_{k+1}] for approximation. The sympletic rule above can be obtained as a special case when alpha = 0.
public:
// Provide access to the Matrix& version of evaluateError:
using Base::evaluateError;
typedef boost::shared_ptr<PendulumFactorPk1 > shared_ptr;
///Constructor
PendulumFactorPk1(Key pKey1, Key qKey, Key qKey1,
double h, double m = 1.0, double r = 1.0, double g = 9.81, double alpha = 0.0, double mu = 1000.0)
: Base(noiseModel::Constrained::All(1, std::abs(mu)), pKey1, qKey, qKey1),
h_(h), m_(m), r_(r), g_(g), alpha_(alpha) {}
/// @return a deep copy of this factor
gtsam::NonlinearFactor::shared_ptr clone() const override {
return boost::static_pointer_cast<gtsam::NonlinearFactor>(
gtsam::NonlinearFactor::shared_ptr(new PendulumFactorPk1(*this))); }
/** 1/h mr^2 (qk1-qk) - mgrh a sin((1-a)pk + a*pk1) - pk1 = 0, with optional derivatives */
Vector evaluateError(const double & pk1, const double & qk, const double & qk1,
OptionalMatrixType H1, OptionalMatrixType H2,
OptionalMatrixType H3) const override {
const size_t p = 1;
double qmid = (1-alpha_)*qk + alpha_*qk1;
double mr2_h = 1/h_*m_*r_*r_;
double mgrh = m_*g_*r_*h_;
if (H1) *H1 = -Matrix::Identity(p,p);
if (H2) *H2 = Matrix::Identity(p,p)*(-mr2_h - mgrh*(1-alpha_)*alpha_*cos(qmid));
if (H3) *H3 = Matrix::Identity(p,p)*( mr2_h - mgrh*alpha_*alpha_*cos(qmid));
return (Vector(1) << mr2_h * (qk1 - qk) - mgrh * alpha_ * sin(qmid) - pk1).finished();
}
}; // \PendulumFactorPk1
}