gtsam/gtsam/navigation/ScenarioRunner.cpp

167 lines
4.7 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file ScenarioRunner.h
* @brief Simple class to test navigation scenarios
* @author Frank Dellaert
*/
#include <gtsam/base/timing.h>
#include <gtsam/navigation/ScenarioRunner.h>
#include <boost/assign.hpp>
#include <cmath>
using namespace std;
using namespace boost::assign;
namespace gtsam {
static double intNoiseVar = 0.0000001;
static const Matrix3 kIntegrationErrorCovariance = intNoiseVar * I_3x3;
PreintegratedImuMeasurements ScenarioRunner::integrate(
double T, const Bias& estimatedBias, bool corrupted) const {
gttic_(integrate);
PreintegratedImuMeasurements pim(p_, estimatedBias);
const double dt = imuSampleTime();
const size_t nrSteps = T / dt;
double t = 0;
for (size_t k = 0; k < nrSteps; k++, t += dt) {
Vector3 measuredOmega =
corrupted ? measuredAngularVelocity(t) : actualAngularVelocity(t);
Vector3 measuredAcc =
corrupted ? measuredSpecificForce(t) : actualSpecificForce(t);
pim.integrateMeasurement(measuredAcc, measuredOmega, dt);
}
return pim;
}
NavState ScenarioRunner::predict(const PreintegratedImuMeasurements& pim,
const Bias& estimatedBias) const {
const NavState state_i(scenario_.pose(0), scenario_.velocity_n(0));
return pim.predict(state_i, estimatedBias);
}
Matrix9 ScenarioRunner::estimateCovariance(double T, size_t N,
const Bias& estimatedBias) const {
gttic_(estimateCovariance);
// Get predict prediction from ground truth measurements
NavState prediction = predict(integrate(T));
// Sample !
Matrix samples(9, N);
Vector9 sum = Vector9::Zero();
for (size_t i = 0; i < N; i++) {
auto pim = integrate(T, estimatedBias, true);
NavState sampled = predict(pim);
Vector9 xi = sampled.localCoordinates(prediction);
samples.col(i) = xi;
sum += xi;
}
// Compute MC covariance
Vector9 sampleMean = sum / N;
Matrix9 Q;
Q.setZero();
for (size_t i = 0; i < N; i++) {
Vector9 xi = samples.col(i) - sampleMean;
Q += xi * xi.transpose();
}
return Q / (N - 1);
}
Matrix6 ScenarioRunner::estimateNoiseCovariance(size_t N) const {
Matrix samples(6, N);
Vector6 sum = Vector6::Zero();
for (size_t i = 0; i < N; i++) {
samples.col(i) << accSampler_.sample() / sqrt_dt_,
gyroSampler_.sample() / sqrt_dt_;
sum += samples.col(i);
}
// Compute MC covariance
Vector6 sampleMean = sum / N;
Matrix6 Q;
Q.setZero();
for (size_t i = 0; i < N; i++) {
Vector6 xi = samples.col(i) - sampleMean;
Q += xi * xi.transpose();
}
return Q / (N - 1);
}
PreintegratedCombinedMeasurements CombinedScenarioRunner::integrate(
double T, const Bias& estimatedBias, bool corrupted) const {
gttic_(integrate);
PreintegratedCombinedMeasurements pim(p_, estimatedBias);
const double dt = imuSampleTime();
const size_t nrSteps = T / dt;
double t = 0;
for (size_t k = 0; k < nrSteps; k++, t += dt) {
Vector3 measuredOmega =
corrupted ? measuredAngularVelocity(t) : actualAngularVelocity(t);
Vector3 measuredAcc =
corrupted ? measuredSpecificForce(t) : actualSpecificForce(t);
pim.integrateMeasurement(measuredAcc, measuredOmega, dt);
}
return pim;
}
NavState CombinedScenarioRunner::predict(
const PreintegratedCombinedMeasurements& pim,
const Bias& estimatedBias) const {
const NavState state_i(scenario().pose(0), scenario().velocity_n(0));
return pim.predict(state_i, estimatedBias);
}
Eigen::Matrix<double, 15, 15> CombinedScenarioRunner::estimateCovariance(
double T, size_t N, const Bias& estimatedBias) const {
gttic_(estimateCovariance);
// Get predict prediction from ground truth measurements
NavState prediction = predict(integrate(T));
// Sample !
Matrix samples(15, N);
Vector15 sum = Vector15::Zero();
for (size_t i = 0; i < N; i++) {
auto pim = integrate(T, estimatedBias, true);
NavState sampled = predict(pim);
Vector15 xi = Vector15::Zero();
xi << sampled.localCoordinates(prediction),
(estimatedBias_.vector() - estimatedBias.vector());
samples.col(i) = xi;
sum += xi;
}
// Compute MC covariance
Vector15 sampleMean = sum / N;
Eigen::Matrix<double, 15, 15> Q;
Q.setZero();
for (size_t i = 0; i < N; i++) {
Vector15 xi = samples.col(i) - sampleMean;
Q += xi * xi.transpose();
}
return Q / (N - 1);
}
} // namespace gtsam