gtsam/cython/gtsam/examples/VisualISAM2Example.py

155 lines
5.6 KiB
Python

"""
GTSAM Copyright 2010-2018, Georgia Tech Research Corporation,
Atlanta, Georgia 30332-0415
All Rights Reserved
Authors: Frank Dellaert, et al. (see THANKS for the full author list)
See LICENSE for the license information
An example of running visual SLAM using iSAM2.
Author: Duy-Nguyen Ta (C++), Frank Dellaert (Python)
"""
# pylint: disable=invalid-name, E1101
from __future__ import print_function
import gtsam
import gtsam.utils.plot as gtsam_plot
import matplotlib.pyplot as plt
import numpy as np
from gtsam import symbol_shorthand_L as L
from gtsam import symbol_shorthand_X as X
from gtsam.examples import SFMdata
from mpl_toolkits.mplot3d import Axes3D # pylint: disable=W0611
def visual_ISAM2_plot(result):
"""
VisualISAMPlot plots current state of ISAM2 object
Author: Ellon Paiva
Based on MATLAB version by: Duy Nguyen Ta and Frank Dellaert
"""
# Declare an id for the figure
fignum = 0
fig = plt.figure(fignum)
axes = fig.gca(projection='3d')
plt.cla()
# Plot points
# Can't use data because current frame might not see all points
# marginals = Marginals(isam.getFactorsUnsafe(), isam.calculateEstimate())
# gtsam.plot_3d_points(result, [], marginals)
gtsam_plot.plot_3d_points(fignum, result, 'rx')
# Plot cameras
i = 0
while result.exists(X(i)):
pose_i = result.atPose3(X(i))
gtsam_plot.plot_pose3(fignum, pose_i, 10)
i += 1
# draw
axes.set_xlim3d(-40, 40)
axes.set_ylim3d(-40, 40)
axes.set_zlim3d(-40, 40)
plt.pause(1)
def visual_ISAM2_example():
plt.ion()
# Define the camera calibration parameters
K = gtsam.Cal3_S2(50.0, 50.0, 0.0, 50.0, 50.0)
# Define the camera observation noise model
measurement_noise = gtsam.noiseModel_Isotropic.Sigma(
2, 1.0) # one pixel in u and v
# Create the set of ground-truth landmarks
points = SFMdata.createPoints()
# Create the set of ground-truth poses
poses = SFMdata.createPoses(K)
# Create an iSAM2 object. Unlike iSAM1, which performs periodic batch steps
# to maintain proper linearization and efficient variable ordering, iSAM2
# performs partial relinearization/reordering at each step. A parameter
# structure is available that allows the user to set various properties, such
# as the relinearization threshold and type of linear solver. For this
# example, we we set the relinearization threshold small so the iSAM2 result
# will approach the batch result.
parameters = gtsam.ISAM2Params()
parameters.setRelinearizeThreshold(0.01)
parameters.setRelinearizeSkip(1)
isam = gtsam.ISAM2(parameters)
# Create a Factor Graph and Values to hold the new data
graph = gtsam.NonlinearFactorGraph()
initial_estimate = gtsam.Values()
# Loop over the different poses, adding the observations to iSAM incrementally
for i, pose in enumerate(poses):
# Add factors for each landmark observation
for j, point in enumerate(points):
camera = gtsam.PinholeCameraCal3_S2(pose, K)
measurement = camera.project(point)
graph.push_back(gtsam.GenericProjectionFactorCal3_S2(
measurement, measurement_noise, X(i), L(j), K))
# Add an initial guess for the current pose
# Intentionally initialize the variables off from the ground truth
initial_estimate.insert(X(i), pose.compose(gtsam.Pose3(
gtsam.Rot3.Rodrigues(-0.1, 0.2, 0.25), gtsam.Point3(0.05, -0.10, 0.20))))
# If this is the first iteration, add a prior on the first pose to set the
# coordinate frame and a prior on the first landmark to set the scale.
# Also, as iSAM solves incrementally, we must wait until each is observed
# at least twice before adding it to iSAM.
if i == 0:
# Add a prior on pose x0
pose_noise = gtsam.noiseModel_Diagonal.Sigmas(np.array(
[0.1, 0.1, 0.1, 0.3, 0.3, 0.3])) # 30cm std on x,y,z 0.1 rad on roll,pitch,yaw
graph.push_back(gtsam.PriorFactorPose3(X(0), poses[0], pose_noise))
# Add a prior on landmark l0
point_noise = gtsam.noiseModel_Isotropic.Sigma(3, 0.1)
graph.push_back(gtsam.PriorFactorPoint3(
L(0), points[0], point_noise)) # add directly to graph
# Add initial guesses to all observed landmarks
# Intentionally initialize the variables off from the ground truth
for j, point in enumerate(points):
initial_estimate.insert(L(j), gtsam.Point3(
point.x()-0.25, point.y()+0.20, point.z()+0.15))
else:
# Update iSAM with the new factors
isam.update(graph, initial_estimate)
# Each call to iSAM2 update(*) performs one iteration of the iterative nonlinear solver.
# If accuracy is desired at the expense of time, update(*) can be called additional
# times to perform multiple optimizer iterations every step.
isam.update()
current_estimate = isam.calculateEstimate()
print("****************************************************")
print("Frame", i, ":")
for j in range(i + 1):
print(X(j), ":", current_estimate.atPose3(X(j)))
for j in range(len(points)):
print(L(j), ":", current_estimate.atPoint3(L(j)))
visual_ISAM2_plot(current_estimate)
# Clear the factor graph and values for the next iteration
graph.resize(0)
initial_estimate.clear()
plt.ioff()
plt.show()
if __name__ == '__main__':
visual_ISAM2_example()