155 lines
5.6 KiB
Python
155 lines
5.6 KiB
Python
"""
|
|
GTSAM Copyright 2010-2018, Georgia Tech Research Corporation,
|
|
Atlanta, Georgia 30332-0415
|
|
All Rights Reserved
|
|
Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
|
|
|
See LICENSE for the license information
|
|
|
|
An example of running visual SLAM using iSAM2.
|
|
Author: Duy-Nguyen Ta (C++), Frank Dellaert (Python)
|
|
"""
|
|
# pylint: disable=invalid-name, E1101
|
|
|
|
from __future__ import print_function
|
|
|
|
import gtsam
|
|
import gtsam.utils.plot as gtsam_plot
|
|
import matplotlib.pyplot as plt
|
|
import numpy as np
|
|
from gtsam import symbol_shorthand_L as L
|
|
from gtsam import symbol_shorthand_X as X
|
|
from gtsam.examples import SFMdata
|
|
from mpl_toolkits.mplot3d import Axes3D # pylint: disable=W0611
|
|
|
|
|
|
def visual_ISAM2_plot(result):
|
|
"""
|
|
VisualISAMPlot plots current state of ISAM2 object
|
|
Author: Ellon Paiva
|
|
Based on MATLAB version by: Duy Nguyen Ta and Frank Dellaert
|
|
"""
|
|
|
|
# Declare an id for the figure
|
|
fignum = 0
|
|
|
|
fig = plt.figure(fignum)
|
|
axes = fig.gca(projection='3d')
|
|
plt.cla()
|
|
|
|
# Plot points
|
|
# Can't use data because current frame might not see all points
|
|
# marginals = Marginals(isam.getFactorsUnsafe(), isam.calculateEstimate())
|
|
# gtsam.plot_3d_points(result, [], marginals)
|
|
gtsam_plot.plot_3d_points(fignum, result, 'rx')
|
|
|
|
# Plot cameras
|
|
i = 0
|
|
while result.exists(X(i)):
|
|
pose_i = result.atPose3(X(i))
|
|
gtsam_plot.plot_pose3(fignum, pose_i, 10)
|
|
i += 1
|
|
|
|
# draw
|
|
axes.set_xlim3d(-40, 40)
|
|
axes.set_ylim3d(-40, 40)
|
|
axes.set_zlim3d(-40, 40)
|
|
plt.pause(1)
|
|
|
|
|
|
def visual_ISAM2_example():
|
|
plt.ion()
|
|
|
|
# Define the camera calibration parameters
|
|
K = gtsam.Cal3_S2(50.0, 50.0, 0.0, 50.0, 50.0)
|
|
|
|
# Define the camera observation noise model
|
|
measurement_noise = gtsam.noiseModel_Isotropic.Sigma(
|
|
2, 1.0) # one pixel in u and v
|
|
|
|
# Create the set of ground-truth landmarks
|
|
points = SFMdata.createPoints()
|
|
|
|
# Create the set of ground-truth poses
|
|
poses = SFMdata.createPoses(K)
|
|
|
|
# Create an iSAM2 object. Unlike iSAM1, which performs periodic batch steps
|
|
# to maintain proper linearization and efficient variable ordering, iSAM2
|
|
# performs partial relinearization/reordering at each step. A parameter
|
|
# structure is available that allows the user to set various properties, such
|
|
# as the relinearization threshold and type of linear solver. For this
|
|
# example, we we set the relinearization threshold small so the iSAM2 result
|
|
# will approach the batch result.
|
|
parameters = gtsam.ISAM2Params()
|
|
parameters.setRelinearizeThreshold(0.01)
|
|
parameters.setRelinearizeSkip(1)
|
|
isam = gtsam.ISAM2(parameters)
|
|
|
|
# Create a Factor Graph and Values to hold the new data
|
|
graph = gtsam.NonlinearFactorGraph()
|
|
initial_estimate = gtsam.Values()
|
|
|
|
# Loop over the different poses, adding the observations to iSAM incrementally
|
|
for i, pose in enumerate(poses):
|
|
|
|
# Add factors for each landmark observation
|
|
for j, point in enumerate(points):
|
|
camera = gtsam.PinholeCameraCal3_S2(pose, K)
|
|
measurement = camera.project(point)
|
|
graph.push_back(gtsam.GenericProjectionFactorCal3_S2(
|
|
measurement, measurement_noise, X(i), L(j), K))
|
|
|
|
# Add an initial guess for the current pose
|
|
# Intentionally initialize the variables off from the ground truth
|
|
initial_estimate.insert(X(i), pose.compose(gtsam.Pose3(
|
|
gtsam.Rot3.Rodrigues(-0.1, 0.2, 0.25), gtsam.Point3(0.05, -0.10, 0.20))))
|
|
|
|
# If this is the first iteration, add a prior on the first pose to set the
|
|
# coordinate frame and a prior on the first landmark to set the scale.
|
|
# Also, as iSAM solves incrementally, we must wait until each is observed
|
|
# at least twice before adding it to iSAM.
|
|
if i == 0:
|
|
# Add a prior on pose x0
|
|
pose_noise = gtsam.noiseModel_Diagonal.Sigmas(np.array(
|
|
[0.1, 0.1, 0.1, 0.3, 0.3, 0.3])) # 30cm std on x,y,z 0.1 rad on roll,pitch,yaw
|
|
graph.push_back(gtsam.PriorFactorPose3(X(0), poses[0], pose_noise))
|
|
|
|
# Add a prior on landmark l0
|
|
point_noise = gtsam.noiseModel_Isotropic.Sigma(3, 0.1)
|
|
graph.push_back(gtsam.PriorFactorPoint3(
|
|
L(0), points[0], point_noise)) # add directly to graph
|
|
|
|
# Add initial guesses to all observed landmarks
|
|
# Intentionally initialize the variables off from the ground truth
|
|
for j, point in enumerate(points):
|
|
initial_estimate.insert(L(j), gtsam.Point3(
|
|
point.x()-0.25, point.y()+0.20, point.z()+0.15))
|
|
else:
|
|
# Update iSAM with the new factors
|
|
isam.update(graph, initial_estimate)
|
|
# Each call to iSAM2 update(*) performs one iteration of the iterative nonlinear solver.
|
|
# If accuracy is desired at the expense of time, update(*) can be called additional
|
|
# times to perform multiple optimizer iterations every step.
|
|
isam.update()
|
|
current_estimate = isam.calculateEstimate()
|
|
print("****************************************************")
|
|
print("Frame", i, ":")
|
|
for j in range(i + 1):
|
|
print(X(j), ":", current_estimate.atPose3(X(j)))
|
|
|
|
for j in range(len(points)):
|
|
print(L(j), ":", current_estimate.atPoint3(L(j)))
|
|
|
|
visual_ISAM2_plot(current_estimate)
|
|
|
|
# Clear the factor graph and values for the next iteration
|
|
graph.resize(0)
|
|
initial_estimate.clear()
|
|
|
|
plt.ioff()
|
|
plt.show()
|
|
|
|
|
|
if __name__ == '__main__':
|
|
visual_ISAM2_example()
|