110 lines
		
	
	
		
			3.1 KiB
		
	
	
	
		
			Matlab
		
	
	
			
		
		
	
	
			110 lines
		
	
	
		
			3.1 KiB
		
	
	
	
		
			Matlab
		
	
	
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 | |
| % GTSAM Copyright 2010, Georgia Tech Research Corporation,
 | |
| % Atlanta, Georgia 30332-0415
 | |
| % All Rights Reserved
 | |
| % Authors: Frank Dellaert, et al. (see THANKS for the full author list)
 | |
| %
 | |
| % See LICENSE for the license information
 | |
| %
 | |
| % @brief Read Robotics Institute range-only Plaza2 dataset and do SAM
 | |
| % @author Frank Dellaert
 | |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 | |
| 
 | |
| %% preliminaries
 | |
| clear
 | |
| import gtsam.*
 | |
| 
 | |
| %% Find and load data file
 | |
| % data available at http://www.frc.ri.cmu.edu/projects/emergencyresponse/RangeData/
 | |
| % Datafile format (from http://www.frc.ri.cmu.edu/projects/emergencyresponse/RangeData/log.html)
 | |
| % GT: Groundtruth path from GPS
 | |
| %    Time (sec)	X_pose (m)	Y_pose (m)	Heading (rad)
 | |
| % DR: Odometry Input (delta distance traveled and delta heading change)
 | |
| %    Time (sec)	Delta Dist. Trav. (m)	Delta Heading (rad)
 | |
| % DRp: Dead Reckoned Path from Odometry
 | |
| %    Time (sec)	X_pose (m)	Y_pose (m)	Heading (rad)
 | |
| % TL: Surveyed Node Locations
 | |
| %    Time (sec)	X_pose (m)	Y_pose (m)
 | |
| % TD
 | |
| %    Time (sec)	Sender / Antenna ID	Receiver Node ID	Range (m)
 | |
| datafile = findExampleDataFile('Plaza2_.mat');
 | |
| load(datafile)
 | |
| M=size(DR,1);
 | |
| K=size(TD,1);
 | |
| sigmaR = 50; % range standard deviation
 | |
| sigmaInitial = 1; % draw initial landmark guess from Gaussian
 | |
| 
 | |
| %% Set Noise parameters
 | |
| noiseModels.prior = noiseModel.Diagonal.Sigmas([1 1 pi]');
 | |
| noiseModels.pointPrior = noiseModel.Diagonal.Sigmas([1 1]');
 | |
| noiseModels.odometry = noiseModel.Diagonal.Sigmas([0.05 0.01 0.2]');
 | |
| base = noiseModel.mEstimator.Tukey(5);
 | |
| noiseModels.range = noiseModel.Robust(base,noiseModel.Isotropic.Sigma(1, sigmaR));
 | |
| 
 | |
| %% Add prior on first pose
 | |
| pose0 = Pose2(GT(1,2),GT(1,3),pi+GT(1,4));
 | |
| graph = NonlinearFactorGraph;
 | |
| graph.add(PriorFactorPose2(0,pose0,noiseModels.prior));
 | |
| initial = Values;
 | |
| initial.insert(0,pose0);
 | |
| 
 | |
| for i=1:size(TL,1)
 | |
|   j=TL(i,1);
 | |
|   initial.insert(symbol('L',j),Point2(sigmaInitial*randn,sigmaInitial*randn));
 | |
| end
 | |
| 
 | |
| %% Loop over odometry
 | |
| tic
 | |
| k = 1; % range measurement counter
 | |
| lastPose = pose0;
 | |
| for i=1:M
 | |
|   
 | |
|   % get odometry measurement
 | |
|   t = DR(i,1);
 | |
|   distance_traveled = DR(i,2);
 | |
|   delta_heading = DR(i,3);
 | |
|   
 | |
|   % add odometry factor
 | |
|   odometry = Pose2(distance_traveled,0,delta_heading);
 | |
|   graph.add(BetweenFactorPose2(i-1, i, odometry, noiseModels.odometry));
 | |
|   
 | |
|   % predict pose and add as initial estimate
 | |
|   predictedPose = lastPose.compose(odometry);
 | |
|   lastPose = predictedPose;
 | |
|   initial.insert(i,predictedPose);
 | |
|   
 | |
|   while k<=K && t>=TD(k,1)
 | |
|     j = TD(k,3);
 | |
|     range = TD(k,4);
 | |
|     factor = RangeFactorPosePoint2(i, symbol('L',j), range, noiseModels.range);
 | |
|     graph.add(factor);
 | |
|     k=k+1;
 | |
|   end
 | |
|   
 | |
| end
 | |
| toc
 | |
| 
 | |
| %% Graph was built, optimize !
 | |
| tic
 | |
| batchOptimizer = LevenbergMarquardtOptimizer(graph, initial);
 | |
| result = batchOptimizer.optimize();
 | |
| toc
 | |
| 
 | |
| %% visualize
 | |
| figure(1);clf;hold on
 | |
| 
 | |
| % odometry
 | |
| XYT = utilities.extractPose2(initial);
 | |
| plot(XYT(:,1),XYT(:,2),'y-');
 | |
| 
 | |
| % GT
 | |
| plot(GT(:,2),GT(:,3),'g-');
 | |
| plot(TL(:,2),TL(:,3),'g*');
 | |
| 
 | |
| % result
 | |
| XYT = utilities.extractPose2(result);
 | |
| plot(XYT(:,1),XYT(:,2),'k-');
 | |
| XY = utilities.extractPoint2(result);
 | |
| plot(XY(:,1),XY(:,2),'k*');
 | |
| axis equal
 |