gtsam/gtsam_unstable/nonlinear/BatchFixedLagSmoother.h

219 lines
7.8 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file BatchFixedLagSmoother.h
* @brief An LM-based fixed-lag smoother.
*
* @author Michael Kaess, Stephen Williams
* @date Oct 14, 2012
*/
// \callgraph
#pragma once
#include <gtsam_unstable/nonlinear/FixedLagSmoother.h>
#include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h>
#include <queue>
namespace gtsam {
class GTSAM_UNSTABLE_EXPORT BatchFixedLagSmoother : public FixedLagSmoother {
public:
/// Typedef for a shared pointer to an Incremental Fixed-Lag Smoother
typedef boost::shared_ptr<BatchFixedLagSmoother> shared_ptr;
/** default constructor */
BatchFixedLagSmoother(double smootherLag = 0.0, const LevenbergMarquardtParams& parameters = LevenbergMarquardtParams(), bool enforceConsistency = true) :
FixedLagSmoother(smootherLag), parameters_(parameters), enforceConsistency_(enforceConsistency) { };
/** destructor */
virtual ~BatchFixedLagSmoother() { };
/** Print the factor for debugging and testing (implementing Testable) */
virtual void print(const std::string& s = "BatchFixedLagSmoother:\n", const KeyFormatter& keyFormatter = DefaultKeyFormatter) const;
/** Check if two IncrementalFixedLagSmoother Objects are equal */
virtual bool equals(const FixedLagSmoother& rhs, double tol = 1e-9) const;
/** Add new factors, updating the solution and relinearizing as needed. */
Result update(const NonlinearFactorGraph& newFactors = NonlinearFactorGraph(), const Values& newTheta = Values(),
const KeyTimestampMap& timestamps = KeyTimestampMap());
/** Compute an estimate from the incomplete linear delta computed during the last update.
* This delta is incomplete because it was not updated below wildfire_threshold. If only
* a single variable is needed, it is faster to call calculateEstimate(const KEY&).
*/
Values calculateEstimate() const {
return theta_.retract(delta_, ordering_);
}
/** Compute an estimate for a single variable using its incomplete linear delta computed
* during the last update. This is faster than calling the no-argument version of
* calculateEstimate, which operates on all variables.
* @param key
* @return
*/
template<class VALUE>
VALUE calculateEstimate(Key key) const {
const Index index = ordering_.at(key);
const Vector delta = delta_.at(index);
return theta_.at<VALUE>(key).retract(delta);
}
/** read the current set of optimizer parameters */
const LevenbergMarquardtParams& params() const {
return parameters_;
}
/** update the current set of optimizer parameters */
LevenbergMarquardtParams& params() {
return parameters_;
}
/** Access the current set of factors */
const NonlinearFactorGraph& getFactors() const {
return factors_;
}
/** Access the current linearization point */
const Values& getLinearizationPoint() const {
return theta_;
}
/** Access the current ordering */
const Ordering& getOrdering() const {
return ordering_;
}
/** Access the current set of deltas to the linearization point */
const VectorValues& getDelta() const {
return delta_;
}
protected:
/** A typedef defining an Key-Factor mapping **/
typedef std::map<Key, std::set<Index> > FactorIndex;
/** The L-M optimization parameters **/
LevenbergMarquardtParams parameters_;
/** A flag indicating if the optimizer should enforce probabilistic consistency by maintaining the
* linearization point of all variables involved in linearized/marginal factors at the edge of the
* smoothing window. This idea is from ??? TODO: Look up paper reference **/
bool enforceConsistency_;
/** The nonlinear factors **/
NonlinearFactorGraph factors_;
/** The current linearization point **/
Values theta_;
/** The set of keys involved in current linear factors. These keys should not be relinearized. **/
Values linearKeys_;
/** The current ordering */
Ordering ordering_;
/** The current set of linear deltas */
VectorValues delta_;
/** The set of available factor graph slots. These occur because we are constantly deleting factors, leaving holes. **/
std::queue<size_t> availableSlots_;
/** A cross-reference structure to allow efficient factor lookups by key **/
FactorIndex factorIndex_;
/** Augment the list of factors with a set of new factors */
void insertFactors(const NonlinearFactorGraph& newFactors);
/** Remove factors from the list of factors by slot index */
void removeFactors(const std::set<size_t>& deleteFactors);
/** Erase any keys associated with timestamps before the provided time */
void eraseKeys(const std::set<Key>& keys);
/** Use colamd to update into an efficient ordering */
void reorder(const std::set<Key>& marginalizeKeys = std::set<Key>());
/** Optimize the current graph using a modified version of L-M */
Result optimize();
/** Marginalize out selected variables */
void marginalize(const std::set<Key>& marginalizableKeys);
// A custom elimination tree that supports forests and partial elimination
class EliminationForest {
public:
typedef boost::shared_ptr<EliminationForest> shared_ptr; ///< Shared pointer to this class
private:
typedef FastList<GaussianFactor::shared_ptr> Factors;
typedef FastList<shared_ptr> SubTrees;
typedef std::vector<GaussianConditional::shared_ptr> Conditionals;
Index key_; ///< index associated with root
Factors factors_; ///< factors associated with root
SubTrees subTrees_; ///< sub-trees
/** default constructor, private, as you should use Create below */
EliminationForest(Index key = 0) : key_(key) {}
/**
* Static internal function to build a vector of parent pointers using the
* algorithm of Gilbert et al., 2001, BIT.
*/
static std::vector<Index> ComputeParents(const VariableIndex& structure);
/** add a factor, for Create use only */
void add(const GaussianFactor::shared_ptr& factor) { factors_.push_back(factor); }
/** add a subtree, for Create use only */
void add(const shared_ptr& child) { subTrees_.push_back(child); }
public:
/** return the key associated with this tree node */
Index key() const { return key_; }
/** return the const reference of children */
const SubTrees& children() const { return subTrees_; }
/** return the const reference to the factors */
const Factors& factors() const { return factors_; }
/** Create an elimination tree from a factor graph */
static std::vector<shared_ptr> Create(const GaussianFactorGraph& factorGraph, const VariableIndex& structure);
/** Recursive routine that eliminates the factors arranged in an elimination tree */
GaussianFactor::shared_ptr eliminateRecursive(GaussianFactorGraph::Eliminate function);
/** Recursive function that helps find the top of each tree */
static void removeChildrenIndices(std::set<Index>& indices, const EliminationForest::shared_ptr& tree);
};
private:
/** Private methods for printing debug information */
static void PrintKeySet(const std::set<Key>& keys, const std::string& label);
static void PrintSymbolicFactor(const NonlinearFactor::shared_ptr& factor);
static void PrintSymbolicFactor(const GaussianFactor::shared_ptr& factor, const Ordering& ordering);
static void PrintSymbolicGraph(const NonlinearFactorGraph& graph, const std::string& label);
static void PrintSymbolicGraph(const GaussianFactorGraph& graph, const Ordering& ordering, const std::string& label);
}; // BatchFixedLagSmoother
} /// namespace gtsam