gtsam/gtsam/geometry/Point2.cpp

135 lines
4.1 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file Point2.cpp
* @brief 2D Point
* @author Frank Dellaert
*/
#include <gtsam/geometry/Point2.h>
#include <cmath>
#include <iostream>
using namespace std;
namespace gtsam {
/* ************************************************************************* */
double norm2(const Point2& p, OptionalJacobian<1,2> H) {
double r = std::sqrt(p.x() * p.x() + p.y() * p.y());
if (H) {
if (std::abs(r) > 1e-10)
*H << p.x() / r, p.y() / r;
else
*H << 1, 1; // really infinity, why 1 ?
}
return r;
}
/* ************************************************************************* */
double distance2(const Point2& p, const Point2& q, OptionalJacobian<1, 2> H1,
OptionalJacobian<1, 2> H2) {
Point2 d = q - p;
if (H1 || H2) {
Matrix12 H;
double r = norm2(d, H);
if (H1) *H1 = -H;
if (H2) *H2 = H;
return r;
} else {
return d.norm();
}
}
/* ************************************************************************* */
// Math inspired by http://paulbourke.net/geometry/circlesphere/
boost::optional<Point2> circleCircleIntersection(double R_d, double r_d,
double tol) {
double R2_d2 = R_d*R_d; // Yes, RD-D2 !
double f = 0.5 + 0.5*(R2_d2 - r_d*r_d);
double h2 = R2_d2 - f*f; // just right triangle rule
// h^2<0 is equivalent to (d > (R + r) || d < (R - r))
// Hence, there are only solutions if >=0
if (h2<-tol) return boost::none; // allow *slightly* negative
else if (h2<tol) return Point2(f,0.0); // one solution
else return Point2(f,std::sqrt(h2)); // two solutions
}
/* ************************************************************************* */
list<Point2> circleCircleIntersection(Point2 c1, Point2 c2,
boost::optional<Point2> fh) {
list<Point2> solutions;
// If fh==boost::none, there are no solutions, i.e., d > (R + r) || d < (R - r)
if (fh) {
// vector between circle centers
Point2 c12 = c2-c1;
// Determine p2, the point where the line through the circle
// intersection points crosses the line between the circle centers.
Point2 p2 = c1 + fh->x() * c12;
// If h == 0, the circles are touching, so just return one point
if (fh->y()==0.0)
solutions.push_back(p2);
else {
// determine the offsets of the intersection points from p
Point2 offset = fh->y() * Point2(-c12.y(), c12.x());
// Determine the absolute intersection points.
solutions.push_back(p2 + offset);
solutions.push_back(p2 - offset);
}
}
return solutions;
}
/* ************************************************************************* */
list<Point2> circleCircleIntersection(Point2 c1, double r1, Point2 c2,
double r2, double tol) {
// distance between circle centers.
double d = distance2(c1, c2);
// centers coincide, either no solution or infinite number of solutions.
if (d<1e-9) return list<Point2>();
// Calculate f and h given normalized radii
double _d = 1.0/d, R_d = r1*_d, r_d=r2*_d;
boost::optional<Point2> fh = circleCircleIntersection(R_d,r_d);
// Call version that takes fh
return circleCircleIntersection(c1, c2, fh);
}
Point2Pair means(const std::vector<Point2Pair> &abPointPairs) {
const size_t n = abPointPairs.size();
if (n == 0) throw std::invalid_argument("Point2::mean input Point2Pair vector is empty");
Point2 aSum(0, 0, 0), bSum(0, 0, 0);
for (const Point2Pair &abPair : abPointPairs) {
aSum += abPair.first;
bSum += abPair.second;
}
const double f = 1.0 / n;
return {aSum * f, bSum * f};
}
/* ************************************************************************* */
ostream &operator<<(ostream &os, const gtsam::Point2Pair &p) {
os << p.first << " <-> " << p.second;
return os;
}
} // namespace gtsam