gtsam/gtsam/discrete/tests/testDiscreteSearch.cpp

114 lines
3.6 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/*
* testDiscreteSearch.cpp
*
* @date January, 2025
* @author Frank Dellaert
*/
#include <CppUnitLite/TestHarness.h>
#include <gtsam/base/Testable.h>
#include <gtsam/discrete/DiscreteSearch.h>
#include "AsiaExample.h"
using namespace gtsam;
// Create Asia Bayes net, FG, and Bayes tree once
namespace asia {
using namespace asia_example;
static const DiscreteBayesNet bayesNet = createAsiaExample();
// Create factor graph and optimize with max-product for MPE
static const DiscreteFactorGraph factorGraph(bayesNet);
static const DiscreteValues mpe = factorGraph.optimize();
// Create ordering
static const Ordering ordering{D, X, B, E, L, T, S, A};
// Create Bayes tree
static const DiscreteBayesTree bayesTree =
*factorGraph.eliminateMultifrontal(ordering);
} // namespace asia
/* ************************************************************************* */
TEST(DiscreteBayesNet, EmptyKBest) {
DiscreteBayesNet net; // no factors
DiscreteSearch search(net);
auto solutions = search.run(3);
// Expect one solution with empty assignment, error=0
EXPECT_LONGS_EQUAL(1, solutions.size());
EXPECT_DOUBLES_EQUAL(0, std::fabs(solutions[0].error), 1e-9);
}
/* ************************************************************************* */
TEST(DiscreteBayesTree, EmptyTree) {
DiscreteBayesTree bt;
DiscreteSearch search(bt);
auto solutions = search.run(3);
// We expect exactly 1 solution with error = 0.0 (the empty assignment).
EXPECT_LONGS_EQUAL(1, solutions.size());
EXPECT_DOUBLES_EQUAL(0, std::fabs(solutions[0].error), 1e-9);
}
/* ************************************************************************* */
TEST(DiscreteBayesNet, AsiaKBest) {
auto fromETree =
DiscreteSearch::FromFactorGraph(asia::factorGraph, asia::ordering);
auto fromJunctionTree =
DiscreteSearch::FromFactorGraph(asia::factorGraph, asia::ordering, true);
const DiscreteSearch fromBayesNet(asia::bayesNet);
const DiscreteSearch fromBayesTree(asia::bayesTree);
for (auto& search :
{fromETree, fromJunctionTree, fromBayesNet, fromBayesTree}) {
// Ask for the MPE
auto mpe = search.run();
// Regression on error lower bound
EXPECT_DOUBLES_EQUAL(1.205536, search.lowerBound(), 1e-5);
// Check that the cost-to-go heuristic decreases from there
auto slots = search.slots();
double previousHeuristic = search.lowerBound();
for (auto&& slot : slots) {
EXPECT(slot.heuristic <= previousHeuristic);
previousHeuristic = slot.heuristic;
}
EXPECT_LONGS_EQUAL(1, mpe.size());
// Regression test: check the MPE solution
EXPECT_DOUBLES_EQUAL(1.236627, std::fabs(mpe[0].error), 1e-5);
// Check it is equal to MPE via inference
EXPECT(assert_equal(asia::mpe, mpe[0].assignment));
// Ask for top 4 solutions
auto solutions = search.run(4);
EXPECT_LONGS_EQUAL(4, solutions.size());
// Regression test: check the first and last solution
EXPECT_DOUBLES_EQUAL(1.236627, std::fabs(solutions[0].error), 1e-5);
EXPECT_DOUBLES_EQUAL(2.201708, std::fabs(solutions[3].error), 1e-5);
}
}
/* ************************************************************************* */
int main() {
TestResult tr;
return TestRegistry::runAllTests(tr);
}
/* ************************************************************************* */