gtsam/python/gtsam/tests/test_Cal3Unified.py

179 lines
7.2 KiB
Python

"""
GTSAM Copyright 2010-2019, Georgia Tech Research Corporation,
Atlanta, Georgia 30332-0415
All Rights Reserved
See LICENSE for the license information
Cal3Unified unit tests.
Author: Frank Dellaert & Duy Nguyen Ta (Python)
"""
import unittest
import numpy as np
from gtsam.symbol_shorthand import K, L, P
from gtsam.utils.test_case import GtsamTestCase
import gtsam
class TestCal3Unified(GtsamTestCase):
@classmethod
def setUpClass(cls):
"""
Stereographic fisheye projection
An equidistant fisheye projection with focal length f is defined
as the relation r/f = 2*tan(theta/2), with r being the radius in the
image plane and theta the incident angle of the object point.
"""
x, y, z = 1.0, 0.0, 1.0
r = np.linalg.norm([x, y, z])
u, v = 2*x/(z+r), 0.0
cls.obj_point = np.array([x, y, z])
cls.img_point = np.array([u, v])
fx, fy, s, u0, v0 = 2, 2, 0, 0, 0
k1, k2, p1, p2 = 0, 0, 0, 0
xi = 1
cls.stereographic = gtsam.Cal3Unified(fx, fy, s, u0, v0, k1, k2, p1, p2, xi)
p1 = [-1.0, 0.0, -1.0]
p2 = [ 1.0, 0.0, -1.0]
q1 = gtsam.Rot3(1.0, 0.0, 0.0, 0.0)
q2 = gtsam.Rot3(1.0, 0.0, 0.0, 0.0)
pose1 = gtsam.Pose3(q1, p1)
pose2 = gtsam.Pose3(q2, p2)
camera1 = gtsam.PinholeCameraCal3Unified(pose1, cls.stereographic)
camera2 = gtsam.PinholeCameraCal3Unified(pose2, cls.stereographic)
cls.origin = np.array([0.0, 0.0, 0.0])
cls.poses = [pose1, pose2]
cls.cameras = [camera1, camera2]
cls.measurements = [k.project(cls.origin) for k in cls.cameras]
def test_Cal3Unified(self):
K = gtsam.Cal3Unified()
self.assertEqual(K.fx(), 1.)
self.assertEqual(K.fx(), 1.)
def test_distortion(self):
"""Stereographic fisheye model of focal length f, defined as r/f = 2*tan(theta/2)"""
x, y, z = self.obj_point
r = np.linalg.norm([x, y, z])
# Note: 2*tan(atan2(x, z)/2) = 2*x/(z+sqrt(x^2+z^2))
self.assertAlmostEqual(2*np.tan(np.arctan2(x, z)/2), 2*x/(z+r))
perspective_pt = self.obj_point[0:2]/self.obj_point[2]
distorted_pt = self.stereographic.uncalibrate(perspective_pt)
rectified_pt = self.stereographic.calibrate(distorted_pt)
self.gtsamAssertEquals(distorted_pt, self.img_point)
self.gtsamAssertEquals(rectified_pt, perspective_pt)
def test_pinhole(self):
"""Spatial stereographic camera projection"""
x, y, z = self.obj_point
u, v = self.img_point
r = np.linalg.norm(self.obj_point)
pose = gtsam.Pose3()
camera = gtsam.PinholeCameraCal3Unified(pose, self.stereographic)
pt1 = camera.Project(self.obj_point)
self.gtsamAssertEquals(pt1, np.array([x/z, y/z]))
pt2 = camera.project(self.obj_point)
self.gtsamAssertEquals(pt2, self.img_point)
obj1 = camera.backproject(self.img_point, z)
self.gtsamAssertEquals(obj1, self.obj_point)
r1 = camera.range(self.obj_point)
self.assertEqual(r1, r)
def test_generic_factor(self):
"""Evaluate residual using pose and point as state variables"""
graph = gtsam.NonlinearFactorGraph()
state = gtsam.Values()
measured = self.img_point
noise_model = gtsam.noiseModel.Isotropic.Sigma(2, 1)
pose_key, point_key = P(0), L(0)
k = self.stereographic
state.insert_pose3(pose_key, gtsam.Pose3())
state.insert_point3(point_key, self.obj_point)
factor = gtsam.GenericProjectionFactorCal3Unified(measured, noise_model, pose_key, point_key, k)
graph.add(factor)
score = graph.error(state)
self.assertAlmostEqual(score, 0)
def test_sfm_factor2(self):
"""Evaluate residual with camera, pose and point as state variables"""
r = np.linalg.norm(self.obj_point)
graph = gtsam.NonlinearFactorGraph()
state = gtsam.Values()
measured = self.img_point
noise_model = gtsam.noiseModel.Isotropic.Sigma(2, 1)
camera_key, pose_key, landmark_key = K(0), P(0), L(0)
k = self.stereographic
state.insert_cal3unified(camera_key, k)
state.insert_pose3(pose_key, gtsam.Pose3())
state.insert_point3(landmark_key, self.obj_point)
factor = gtsam.GeneralSFMFactor2Cal3Unified(measured, noise_model, pose_key, landmark_key, camera_key)
graph.add(factor)
score = graph.error(state)
self.assertAlmostEqual(score, 0)
def test_jacobian(self):
"""Evaluate jacobian at optical axis"""
obj_point_on_axis = np.array([0, 0, 1])
img_point = np.array([0.0, 0.0])
pose = gtsam.Pose3()
camera = gtsam.Cal3Unified()
state = gtsam.Values()
camera_key, pose_key, landmark_key = K(0), P(0), L(0)
state.insert_cal3unified(camera_key, camera)
state.insert_point3(landmark_key, obj_point_on_axis)
state.insert_pose3(pose_key, pose)
g = gtsam.NonlinearFactorGraph()
noise_model = gtsam.noiseModel.Unit.Create(2)
factor = gtsam.GeneralSFMFactor2Cal3Unified(img_point, noise_model, pose_key, landmark_key, camera_key)
g.add(factor)
f = g.error(state)
gaussian_factor_graph = g.linearize(state)
H, z = gaussian_factor_graph.jacobian()
self.assertAlmostEqual(f, 0)
self.gtsamAssertEquals(z, np.zeros(2))
self.gtsamAssertEquals(H @ H.T, 4*np.eye(2))
Dcal = np.zeros((2, 10), order='F')
Dp = np.zeros((2, 2), order='F')
camera.calibrate(img_point, Dcal, Dp)
self.gtsamAssertEquals(Dcal, np.array(
[[ 0., 0., 0., -1., 0., 0., 0., 0., 0., 0.],
[ 0., 0., 0., 0., -1., 0., 0., 0., 0., 0.]]))
self.gtsamAssertEquals(Dp, np.array(
[[ 1., -0.],
[-0., 1.]]))
@unittest.skip("triangulatePoint3 currently seems to require perspective projections.")
def test_triangulation(self):
"""Estimate spatial point from image measurements"""
triangulated = gtsam.triangulatePoint3(self.cameras, self.measurements, rank_tol=1e-9, optimize=True)
self.gtsamAssertEquals(triangulated, self.origin)
def test_triangulation_rectify(self):
"""Estimate spatial point from image measurements using rectification"""
rectified = [k.calibration().calibrate(pt) for k, pt in zip(self.cameras, self.measurements)]
shared_cal = gtsam.Cal3_S2()
triangulated = gtsam.triangulatePoint3(self.poses, shared_cal, rectified, rank_tol=1e-9, optimize=False)
self.gtsamAssertEquals(triangulated, self.origin)
def test_retract(self):
expected = gtsam.Cal3Unified(100 + 2, 105 + 3, 0.0 + 4, 320 + 5, 240 + 6,
1e-3 + 7, 2.0*1e-3 + 8, 3.0*1e-3 + 9, 4.0*1e-3 + 10, 0.1 + 1)
K = gtsam.Cal3Unified(100, 105, 0.0, 320, 240,
1e-3, 2.0*1e-3, 3.0*1e-3, 4.0*1e-3, 0.1)
d = np.array([2, 3, 4, 5, 6, 7, 8, 9, 10, 1], order='F')
actual = K.retract(d)
self.gtsamAssertEquals(actual, expected)
np.testing.assert_allclose(d, K.localCoordinates(actual))
if __name__ == "__main__":
unittest.main()