gtsam/gtsam/hybrid/HybridJunctionTree.cpp

177 lines
7.1 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file HybridJunctionTree.cpp
* @date Mar 11, 2022
* @author Fan Jiang
*/
#include <gtsam/hybrid/HybridEliminationTree.h>
#include <gtsam/hybrid/HybridGaussianFactorGraph.h>
#include <gtsam/hybrid/HybridJunctionTree.h>
#include <gtsam/inference/JunctionTree-inst.h>
#include <gtsam/inference/Key.h>
#include <unordered_map>
namespace gtsam {
// Instantiate base classes
template class EliminatableClusterTree<HybridBayesTree,
HybridGaussianFactorGraph>;
template class JunctionTree<HybridBayesTree, HybridGaussianFactorGraph>;
struct HybridConstructorTraversalData {
typedef HybridJunctionTree::Node Node;
typedef
typename JunctionTree<HybridBayesTree,
HybridGaussianFactorGraph>::sharedNode sharedNode;
HybridConstructorTraversalData* const parentData;
sharedNode junctionTreeNode;
FastVector<SymbolicConditional::shared_ptr> childSymbolicConditionals;
FastVector<SymbolicFactor::shared_ptr> childSymbolicFactors;
KeySet discreteKeys;
// Small inner class to store symbolic factors
class SymbolicFactors : public FactorGraph<Factor> {};
HybridConstructorTraversalData(HybridConstructorTraversalData* _parentData)
: parentData(_parentData) {}
// Pre-order visitor function
static HybridConstructorTraversalData ConstructorTraversalVisitorPre(
const std::shared_ptr<HybridEliminationTree::Node>& node,
HybridConstructorTraversalData& parentData) {
// On the pre-order pass, before children have been visited, we just set up
// a traversal data structure with its own JT node, and create a child
// pointer in its parent.
HybridConstructorTraversalData data =
HybridConstructorTraversalData(&parentData);
data.junctionTreeNode = std::make_shared<Node>(node->key, node->factors);
parentData.junctionTreeNode->addChild(data.junctionTreeNode);
// Add all the discrete keys in the hybrid factors to the current data
for (const auto& f : node->factors) {
if (auto hf = std::dynamic_pointer_cast<HybridFactor>(f)) {
for (auto& k : hf->discreteKeys()) {
data.discreteKeys.insert(k.first);
}
} else if (auto hf = std::dynamic_pointer_cast<DiscreteFactor>(f)) {
for (auto& k : hf->discreteKeys()) {
data.discreteKeys.insert(k.first);
}
}
}
return data;
}
// Post-order visitor function
static void ConstructorTraversalVisitorPost(
const std::shared_ptr<HybridEliminationTree::Node>& node,
const HybridConstructorTraversalData& data) {
// In this post-order visitor, we combine the symbolic elimination results
// from the elimination tree children and symbolically eliminate the current
// elimination tree node. We then check whether each of our elimination
// tree child nodes should be merged with us. The check for this is that
// our number of symbolic elimination parents is exactly 1 less than
// our child's symbolic elimination parents - this condition indicates that
// eliminating the current node did not introduce any parents beyond those
// already in the child->
// Do symbolic elimination for this node
SymbolicFactors symbolicFactors;
symbolicFactors.reserve(node->factors.size() +
data.childSymbolicFactors.size());
// Add ETree node factors
symbolicFactors.push_back(node->factors);
// Add symbolic factors passed up from children
symbolicFactors.push_back(data.childSymbolicFactors);
Ordering keyAsOrdering;
keyAsOrdering.push_back(node->key);
const auto [conditional, separatorFactor] =
internal::EliminateSymbolic(symbolicFactors, keyAsOrdering);
// Store symbolic elimination results in the parent
data.parentData->childSymbolicConditionals.push_back(conditional);
data.parentData->childSymbolicFactors.push_back(separatorFactor);
data.parentData->discreteKeys.merge(data.discreteKeys);
sharedNode jt_node = data.junctionTreeNode;
const FastVector<SymbolicConditional::shared_ptr>& childConditionals =
data.childSymbolicConditionals;
jt_node->problemSize_ = (int)(conditional->size() * symbolicFactors.size());
// Merge our children if they are in our clique - if our conditional has
// exactly one fewer parent than our child's conditional.
const size_t nrParents = conditional->nrParents();
const size_t nrChildren = jt_node->nrChildren();
assert(childConditionals.size() == nrChildren);
// decide which children to merge, as index into children
std::vector<size_t> nrChildrenFrontals = jt_node->nrFrontalsOfChildren();
std::vector<bool> merge(nrChildren, false);
size_t nrFrontals = 1;
for (size_t i = 0; i < nrChildren; i++) {
// Check if we should merge the i^th child
if (nrParents + nrFrontals == childConditionals[i]->nrParents()) {
const bool myType =
data.discreteKeys.exists(conditional->frontals().front());
const bool theirType =
data.discreteKeys.exists(childConditionals[i]->frontals().front());
if (myType == theirType) {
// Increment number of frontal variables
nrFrontals += nrChildrenFrontals[i];
merge[i] = true;
}
}
}
// now really merge
jt_node->mergeChildren(merge);
}
};
/* ************************************************************************* */
HybridJunctionTree::HybridJunctionTree(
const HybridEliminationTree& eliminationTree) {
gttic(JunctionTree_FromEliminationTree);
// Here we rely on the BayesNet having been produced by this elimination tree,
// such that the conditionals are arranged in DFS post-order. We traverse the
// elimination tree, and inspect the symbolic conditional corresponding to
// each node. The elimination tree node is added to the same clique with its
// parent if it has exactly one more Bayes net conditional parent than
// does its elimination tree parent.
// Traverse the elimination tree, doing symbolic elimination and merging nodes
// as we go. Gather the created junction tree roots in a dummy Node.
typedef HybridConstructorTraversalData Data;
Data rootData(0);
rootData.junctionTreeNode =
std::make_shared<typename Base::Node>(); // Make a dummy node to gather
// the junction tree roots
treeTraversal::DepthFirstForest(eliminationTree, rootData,
Data::ConstructorTraversalVisitorPre,
Data::ConstructorTraversalVisitorPost);
// Assign roots from the dummy node
this->addChildrenAsRoots(rootData.junctionTreeNode);
// Transfer remaining factors from elimination tree
Base::remainingFactors_ = eliminationTree.remainingFactors();
}
} // namespace gtsam