gtsam/gtsam/geometry/SO3.cpp

173 lines
5.6 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file SO3.cpp
* @brief 3*3 matrix representation o SO(3)
* @author Frank Dellaert
* @date December 2014
*/
#include <gtsam/geometry/SO3.h>
#include <gtsam/base/concepts.h>
#include <cmath>
using namespace std;
namespace gtsam {
/* ************************************************************************* */
SO3 SO3::Rodrigues(const Vector3& axis, double theta) {
using std::cos;
using std::sin;
// get components of axis \omega
double wx = axis(0), wy = axis(1), wz = axis(2);
double c = cos(theta), s = sin(theta), c_1 = 1 - c;
double wwTxx = wx * wx, wwTyy = wy * wy, wwTzz = wz * wz;
double swx = wx * s, swy = wy * s, swz = wz * s;
double C00 = c_1 * wwTxx, C01 = c_1 * wx * wy, C02 = c_1 * wx * wz;
double C11 = c_1 * wwTyy, C12 = c_1 * wy * wz;
double C22 = c_1 * wwTzz;
Matrix3 R;
R << c + C00, -swz + C01, swy + C02, //
swz + C01, c + C11, -swx + C12, //
-swy + C02, swx + C12, c + C22;
return R;
}
/// simply convert omega to axis/angle representation
SO3 SO3::Expmap(const Vector3& omega,
ChartJacobian H) {
if (H)
*H = ExpmapDerivative(omega);
if (omega.isZero())
return Identity();
else {
double angle = omega.norm();
return Rodrigues(omega / angle, angle);
}
}
/* ************************************************************************* */
Vector3 SO3::Logmap(const SO3& R, ChartJacobian H) {
using std::sqrt;
using std::sin;
// note switch to base 1
const double& R11 = R(0, 0), R12 = R(0, 1), R13 = R(0, 2);
const double& R21 = R(1, 0), R22 = R(1, 1), R23 = R(1, 2);
const double& R31 = R(2, 0), R32 = R(2, 1), R33 = R(2, 2);
// Get trace(R)
double tr = R.trace();
Vector3 omega;
// when trace == -1, i.e., when theta = +-pi, +-3pi, +-5pi, etc.
// we do something special
if (std::abs(tr + 1.0) < 1e-10) {
if (std::abs(R33 + 1.0) > 1e-10)
omega = (M_PI / sqrt(2.0 + 2.0 * R33)) * Vector3(R13, R23, 1.0 + R33);
else if (std::abs(R22 + 1.0) > 1e-10)
omega = (M_PI / sqrt(2.0 + 2.0 * R22)) * Vector3(R12, 1.0 + R22, R32);
else
// if(std::abs(R.r1_.x()+1.0) > 1e-10) This is implicit
omega = (M_PI / sqrt(2.0 + 2.0 * R11)) * Vector3(1.0 + R11, R21, R31);
} else {
double magnitude;
double tr_3 = tr - 3.0; // always negative
if (tr_3 < -1e-7) {
double theta = acos((tr - 1.0) / 2.0);
magnitude = theta / (2.0 * sin(theta));
} else {
// when theta near 0, +-2pi, +-4pi, etc. (trace near 3.0)
// use Taylor expansion: theta \approx 1/2-(t-3)/12 + O((t-3)^2)
magnitude = 0.5 - tr_3 * tr_3 / 12.0;
}
omega = magnitude * Vector3(R32 - R23, R13 - R31, R21 - R12);
}
if(H) *H = LogmapDerivative(omega);
return omega;
}
/* ************************************************************************* */
Matrix3 SO3::ExpmapDerivative(const Vector3& omega) {
using std::cos;
using std::sin;
if(zero(omega)) return I_3x3;
double theta = omega.norm(); // rotation angle
#ifdef DUY_VERSION
/// Follow Iserles05an, B10, pg 147, with a sign change in the second term (left version)
Matrix3 X = skewSymmetric(omega);
Matrix3 X2 = X*X;
double vi = theta/2.0;
double s1 = sin(vi)/vi;
double s2 = (theta - sin(theta))/(theta*theta*theta);
return I_3x3 - 0.5*s1*s1*X + s2*X2;
#else // Luca's version
/**
* Right Jacobian for Exponential map in SO(3) - equation (10.86) and following equations in
* G.S. Chirikjian, "Stochastic Models, Information Theory, and Lie Groups", Volume 2, 2008.
* expmap(thetahat + omega) \approx expmap(thetahat) * expmap(Jr * omega)
* where Jr = ExpmapDerivative(thetahat);
* This maps a perturbation in the tangent space (omega) to
* a perturbation on the manifold (expmap(Jr * omega))
*/
// element of Lie algebra so(3): X = omega^, normalized by normx
const Matrix3 Y = skewSymmetric(omega) / theta;
return I_3x3 - ((1 - cos(theta)) / (theta)) * Y
+ (1 - sin(theta) / theta) * Y * Y; // right Jacobian
#endif
}
/* ************************************************************************* */
Matrix3 SO3::LogmapDerivative(const Vector3& omega) {
using std::cos;
using std::sin;
if(zero(omega)) return I_3x3;
double theta = omega.norm();
#ifdef DUY_VERSION
/// Follow Iserles05an, B11, pg 147, with a sign change in the second term (left version)
Matrix3 X = skewSymmetric(omega);
Matrix3 X2 = X*X;
double vi = theta/2.0;
double s2 = (theta*tan(M_PI_2-vi) - 2)/(2*theta*theta);
return I_3x3 + 0.5*X - s2*X2;
#else // Luca's version
/** Right Jacobian for Log map in SO(3) - equation (10.86) and following equations in
* G.S. Chirikjian, "Stochastic Models, Information Theory, and Lie Groups", Volume 2, 2008.
* logmap( Rhat * expmap(omega) ) \approx logmap( Rhat ) + Jrinv * omega
* where Jrinv = LogmapDerivative(omega);
* This maps a perturbation on the manifold (expmap(omega))
* to a perturbation in the tangent space (Jrinv * omega)
*/
const Matrix3 X = skewSymmetric(omega); // element of Lie algebra so(3): X = omega^
return I_3x3 + 0.5 * X
+ (1 / (theta * theta) - (1 + cos(theta)) / (2 * theta * sin(theta))) * X
* X;
#endif
}
/* ************************************************************************* */
} // end namespace gtsam