336 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			C++
		
	
	
			
		
		
	
	
			336 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			C++
		
	
	
/* ----------------------------------------------------------------------------
 | 
						|
 | 
						|
 * GTSAM Copyright 2010, Georgia Tech Research Corporation, 
 | 
						|
 * Atlanta, Georgia 30332-0415
 | 
						|
 * All Rights Reserved
 | 
						|
 * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
 | 
						|
 | 
						|
 * See LICENSE for the license information
 | 
						|
 | 
						|
 * -------------------------------------------------------------------------- */
 | 
						|
 | 
						|
/**
 | 
						|
 * @file    testGaussianISAM.cpp
 | 
						|
 * @brief   Unit tests for GaussianISAM
 | 
						|
 * @author  Michael Kaess
 | 
						|
 */
 | 
						|
 | 
						|
#include <tests/smallExample.h>
 | 
						|
#include <gtsam/inference/Symbol.h>
 | 
						|
#include <gtsam/linear/GaussianBayesTree.h>
 | 
						|
#include <gtsam/linear/GaussianBayesNet.h>
 | 
						|
#include <gtsam/linear/GaussianConditional.h>
 | 
						|
#include <gtsam/linear/GaussianDensity.h>
 | 
						|
#include <gtsam/linear/HessianFactor.h>
 | 
						|
#include <gtsam/geometry/Rot2.h>
 | 
						|
 | 
						|
#include <CppUnitLite/TestHarness.h>
 | 
						|
 | 
						|
#include <boost/assign/std/list.hpp> // for operator +=
 | 
						|
using namespace boost::assign;
 | 
						|
 | 
						|
using namespace std;
 | 
						|
using namespace gtsam;
 | 
						|
using namespace example;
 | 
						|
 | 
						|
using symbol_shorthand::X;
 | 
						|
using symbol_shorthand::L;
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
// Some numbers that should be consistent among all smoother tests
 | 
						|
 | 
						|
static double sigmax1 = 0.786153, /*sigmax2 = 1.0/1.47292,*/ sigmax3 = 0.671512, sigmax4 =
 | 
						|
    0.669534 /*, sigmax5 = sigmax3, sigmax6 = sigmax2*/, sigmax7 = sigmax1;
 | 
						|
 | 
						|
static const double tol = 1e-4;
 | 
						|
 | 
						|
/* ************************************************************************* *
 | 
						|
 Bayes tree for smoother with "natural" ordering:
 | 
						|
C1 x6 x7
 | 
						|
C2   x5 : x6
 | 
						|
C3     x4 : x5
 | 
						|
C4       x3 : x4
 | 
						|
C5         x2 : x3
 | 
						|
C6           x1 : x2
 | 
						|
**************************************************************************** */
 | 
						|
TEST( GaussianBayesTree, linear_smoother_shortcuts )
 | 
						|
{
 | 
						|
  // Create smoother with 7 nodes
 | 
						|
  GaussianFactorGraph smoother = createSmoother(7);
 | 
						|
 | 
						|
  GaussianBayesTree bayesTree = *smoother.eliminateMultifrontal();
 | 
						|
 | 
						|
  // Create the Bayes tree
 | 
						|
  LONGS_EQUAL(6, (long)bayesTree.size());
 | 
						|
 | 
						|
  // Check the conditional P(Root|Root)
 | 
						|
  GaussianBayesNet empty;
 | 
						|
  GaussianBayesTree::sharedClique R = bayesTree.roots().front();
 | 
						|
  GaussianBayesNet actual1 = R->shortcut(R);
 | 
						|
  EXPECT(assert_equal(empty,actual1,tol));
 | 
						|
 | 
						|
  // Check the conditional P(C2|Root)
 | 
						|
  GaussianBayesTree::sharedClique C2 = bayesTree[X(5)];
 | 
						|
  GaussianBayesNet actual2 = C2->shortcut(R);
 | 
						|
  EXPECT(assert_equal(empty,actual2,tol));
 | 
						|
 | 
						|
  // Check the conditional P(C3|Root)
 | 
						|
  double sigma3 = 0.61808;
 | 
						|
  Matrix A56 = (Matrix(2,2) << -0.382022,0.,0.,-0.382022).finished();
 | 
						|
  GaussianBayesNet expected3;
 | 
						|
  expected3 += GaussianConditional(X(5), Z_2x1, I_2x2/sigma3, X(6), A56/sigma3);
 | 
						|
  GaussianBayesTree::sharedClique C3 = bayesTree[X(4)];
 | 
						|
  GaussianBayesNet actual3 = C3->shortcut(R);
 | 
						|
  EXPECT(assert_equal(expected3,actual3,tol));
 | 
						|
 | 
						|
  // Check the conditional P(C4|Root)
 | 
						|
  double sigma4 = 0.661968;
 | 
						|
  Matrix A46 = (Matrix(2,2) << -0.146067,0.,0.,-0.146067).finished();
 | 
						|
  GaussianBayesNet expected4;
 | 
						|
  expected4 += GaussianConditional(X(4), Z_2x1, I_2x2/sigma4, X(6), A46/sigma4);
 | 
						|
  GaussianBayesTree::sharedClique C4 = bayesTree[X(3)];
 | 
						|
  GaussianBayesNet actual4 = C4->shortcut(R);
 | 
						|
  EXPECT(assert_equal(expected4,actual4,tol));
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* *
 | 
						|
 Bayes tree for smoother with "nested dissection" ordering:
 | 
						|
 | 
						|
   Node[x1] P(x1 | x2)
 | 
						|
   Node[x3] P(x3 | x2 x4)
 | 
						|
   Node[x5] P(x5 | x4 x6)
 | 
						|
   Node[x7] P(x7 | x6)
 | 
						|
   Node[x2] P(x2 | x4)
 | 
						|
   Node[x6] P(x6 | x4)
 | 
						|
   Node[x4] P(x4)
 | 
						|
 | 
						|
 becomes
 | 
						|
 | 
						|
   C1     x5 x6 x4
 | 
						|
   C2      x3 x2 : x4
 | 
						|
   C3        x1 : x2
 | 
						|
   C4      x7 : x6
 | 
						|
 | 
						|
************************************************************************* */
 | 
						|
TEST( GaussianBayesTree, balanced_smoother_marginals )
 | 
						|
{
 | 
						|
  // Create smoother with 7 nodes
 | 
						|
  GaussianFactorGraph smoother = createSmoother(7);
 | 
						|
 | 
						|
  // Create the Bayes tree
 | 
						|
  Ordering ordering;
 | 
						|
  ordering += X(1),X(3),X(5),X(7),X(2),X(6),X(4);
 | 
						|
  GaussianBayesTree bayesTree = *smoother.eliminateMultifrontal(ordering);
 | 
						|
 | 
						|
  VectorValues actualSolution = bayesTree.optimize();
 | 
						|
  VectorValues expectedSolution = VectorValues::Zero(actualSolution);
 | 
						|
  EXPECT(assert_equal(expectedSolution,actualSolution,tol));
 | 
						|
 | 
						|
  LONGS_EQUAL(4, (long)bayesTree.size());
 | 
						|
 | 
						|
  double tol=1e-5;
 | 
						|
 | 
						|
  // Check marginal on x1
 | 
						|
  JacobianFactor expected1 = GaussianDensity::FromMeanAndStddev(X(1), Z_2x1, sigmax1);
 | 
						|
  JacobianFactor actual1 = *bayesTree.marginalFactor(X(1));
 | 
						|
  Matrix expectedCovarianceX1 = I_2x2 * (sigmax1 * sigmax1);
 | 
						|
  Matrix actualCovarianceX1;
 | 
						|
  GaussianFactor::shared_ptr m = bayesTree.marginalFactor(X(1), EliminateCholesky);
 | 
						|
  actualCovarianceX1 = bayesTree.marginalFactor(X(1), EliminateCholesky)->information().inverse();
 | 
						|
  EXPECT(assert_equal(expectedCovarianceX1, actualCovarianceX1, tol));
 | 
						|
  EXPECT(assert_equal(expected1,actual1,tol));
 | 
						|
 | 
						|
  // Check marginal on x2
 | 
						|
  double sigx2 = 0.68712938; // FIXME: this should be corrected analytically
 | 
						|
  JacobianFactor expected2 = GaussianDensity::FromMeanAndStddev(X(2), Z_2x1, sigx2);
 | 
						|
  JacobianFactor actual2 = *bayesTree.marginalFactor(X(2));
 | 
						|
  EXPECT(assert_equal(expected2,actual2,tol));
 | 
						|
 | 
						|
  // Check marginal on x3
 | 
						|
  JacobianFactor expected3 = GaussianDensity::FromMeanAndStddev(X(3), Z_2x1, sigmax3);
 | 
						|
  JacobianFactor actual3 = *bayesTree.marginalFactor(X(3));
 | 
						|
  EXPECT(assert_equal(expected3,actual3,tol));
 | 
						|
 | 
						|
  // Check marginal on x4
 | 
						|
  JacobianFactor expected4 = GaussianDensity::FromMeanAndStddev(X(4), Z_2x1, sigmax4);
 | 
						|
  JacobianFactor actual4 = *bayesTree.marginalFactor(X(4));
 | 
						|
  EXPECT(assert_equal(expected4,actual4,tol));
 | 
						|
 | 
						|
  // Check marginal on x7 (should be equal to x1)
 | 
						|
  JacobianFactor expected7 = GaussianDensity::FromMeanAndStddev(X(7), Z_2x1, sigmax7);
 | 
						|
  JacobianFactor actual7 = *bayesTree.marginalFactor(X(7));
 | 
						|
  EXPECT(assert_equal(expected7,actual7,tol));
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
TEST( GaussianBayesTree, balanced_smoother_shortcuts )
 | 
						|
{
 | 
						|
  // Create smoother with 7 nodes
 | 
						|
  GaussianFactorGraph smoother = createSmoother(7);
 | 
						|
 | 
						|
  // Create the Bayes tree
 | 
						|
  Ordering ordering;
 | 
						|
  ordering += X(1),X(3),X(5),X(7),X(2),X(6),X(4);
 | 
						|
  GaussianBayesTree bayesTree = *smoother.eliminateMultifrontal(ordering);
 | 
						|
 | 
						|
  // Check the conditional P(Root|Root)
 | 
						|
  GaussianBayesNet empty;
 | 
						|
  GaussianBayesTree::sharedClique R = bayesTree.roots().front();
 | 
						|
  GaussianBayesNet actual1 = R->shortcut(R);
 | 
						|
  EXPECT(assert_equal(empty,actual1,tol));
 | 
						|
 | 
						|
  // Check the conditional P(C2|Root)
 | 
						|
  GaussianBayesTree::sharedClique C2 = bayesTree[X(3)];
 | 
						|
  GaussianBayesNet actual2 = C2->shortcut(R);
 | 
						|
  EXPECT(assert_equal(empty,actual2,tol));
 | 
						|
 | 
						|
  // Check the conditional P(C3|Root), which should be equal to P(x2|x4)
 | 
						|
  /** TODO: Note for multifrontal conditional:
 | 
						|
   * p_x2_x4 is now an element conditional of the multifrontal conditional bayesTree[ordering[X(2)]]->conditional()
 | 
						|
   * We don't know yet how to take it out.
 | 
						|
   */
 | 
						|
//  GaussianConditional::shared_ptr p_x2_x4 = bayesTree[ordering[X(2)]]->conditional();
 | 
						|
//  p_x2_x4->print("Conditional p_x2_x4: ");
 | 
						|
//  GaussianBayesNet expected3(p_x2_x4);
 | 
						|
//  GaussianISAM::sharedClique C3 = isamTree[ordering[X(1)]];
 | 
						|
//  GaussianBayesNet actual3 = GaussianISAM::shortcut(C3,R);
 | 
						|
//  EXPECT(assert_equal(expected3,actual3,tol));
 | 
						|
}
 | 
						|
 | 
						|
///* ************************************************************************* */
 | 
						|
//TEST( BayesTree, balanced_smoother_clique_marginals )
 | 
						|
//{
 | 
						|
//  // Create smoother with 7 nodes
 | 
						|
//  Ordering ordering;
 | 
						|
//  ordering += X(1),X(3),X(5),X(7),X(2),X(6),X(4);
 | 
						|
//  GaussianFactorGraph smoother = createSmoother(7, ordering).first;
 | 
						|
//
 | 
						|
//  // Create the Bayes tree
 | 
						|
//  GaussianBayesNet chordalBayesNet = *GaussianSequentialSolver(smoother).eliminate();
 | 
						|
//  GaussianISAM bayesTree(chordalBayesNet);
 | 
						|
//
 | 
						|
//  // Check the clique marginal P(C3)
 | 
						|
//  double sigmax2_alt = 1/1.45533; // THIS NEEDS TO BE CHECKED!
 | 
						|
//  GaussianBayesNet expected = simpleGaussian(ordering[X(2)],Z_2x1,sigmax2_alt);
 | 
						|
//  push_front(expected,ordering[X(1)], Z_2x1, eye(2)*sqrt(2), ordering[X(2)], -eye(2)*sqrt(2)/2, ones(2));
 | 
						|
//  GaussianISAM::sharedClique R = bayesTree.root(), C3 = bayesTree[ordering[X(1)]];
 | 
						|
//  GaussianFactorGraph marginal = C3->marginal(R);
 | 
						|
//  GaussianVariableIndex varIndex(marginal);
 | 
						|
//  Permutation toFront(Permutation::PullToFront(C3->keys(), varIndex.size()));
 | 
						|
//  Permutation toFrontInverse(*toFront.inverse());
 | 
						|
//  varIndex.permute(toFront);
 | 
						|
//  for(const GaussianFactor::shared_ptr& factor: marginal) {
 | 
						|
//    factor->permuteWithInverse(toFrontInverse); }
 | 
						|
//  GaussianBayesNet actual = *inference::EliminateUntil(marginal, C3->keys().size(), varIndex);
 | 
						|
//  actual.permuteWithInverse(toFront);
 | 
						|
//  EXPECT(assert_equal(expected,actual,tol));
 | 
						|
//}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
TEST( GaussianBayesTree, balanced_smoother_joint )
 | 
						|
{
 | 
						|
  // Create smoother with 7 nodes
 | 
						|
  Ordering ordering;
 | 
						|
  ordering += X(1),X(3),X(5),X(7),X(2),X(6),X(4);
 | 
						|
  GaussianFactorGraph smoother = createSmoother(7);
 | 
						|
 | 
						|
  // Create the Bayes tree, expected to look like:
 | 
						|
  //   x5 x6 x4
 | 
						|
  //     x3 x2 : x4
 | 
						|
  //       x1 : x2
 | 
						|
  //     x7 : x6
 | 
						|
  GaussianBayesTree bayesTree = *smoother.eliminateMultifrontal(ordering);
 | 
						|
 | 
						|
  // Conditional density elements reused by both tests
 | 
						|
  const Matrix I = I_2x2, A = -0.00429185*I;
 | 
						|
 | 
						|
  // Check the joint density P(x1,x7) factored as P(x1|x7)P(x7)
 | 
						|
  GaussianBayesNet expected1 = list_of
 | 
						|
    // Why does the sign get flipped on the prior?
 | 
						|
    (GaussianConditional(X(1), Z_2x1, I/sigmax7, X(7), A/sigmax7))
 | 
						|
    (GaussianConditional(X(7), Z_2x1, -1*I/sigmax7));
 | 
						|
  GaussianBayesNet actual1 = *bayesTree.jointBayesNet(X(1),X(7));
 | 
						|
  EXPECT(assert_equal(expected1, actual1, tol));
 | 
						|
 | 
						|
  //  // Check the joint density P(x7,x1) factored as P(x7|x1)P(x1)
 | 
						|
  //  GaussianBayesNet expected2;
 | 
						|
  //  GaussianConditional::shared_ptr
 | 
						|
  //      parent2(new GaussianConditional(X(1), Z_2x1, -1*I/sigmax1, ones(2)));
 | 
						|
  //    expected2.push_front(parent2);
 | 
						|
  //  push_front(expected2,X(7), Z_2x1, I/sigmax1, X(1), A/sigmax1, sigma);
 | 
						|
  //  GaussianBayesNet actual2 = *bayesTree.jointBayesNet(X(7),X(1));
 | 
						|
  //  EXPECT(assert_equal(expected2,actual2,tol));
 | 
						|
 | 
						|
  // Check the joint density P(x1,x4), i.e. with a root variable
 | 
						|
  double sig14 = 0.784465;
 | 
						|
  Matrix A14 = -0.0769231*I;
 | 
						|
  GaussianBayesNet expected3 = list_of
 | 
						|
    (GaussianConditional(X(1), Z_2x1, I/sig14, X(4), A14/sig14))
 | 
						|
    (GaussianConditional(X(4), Z_2x1, I/sigmax4));
 | 
						|
  GaussianBayesNet actual3 = *bayesTree.jointBayesNet(X(1),X(4));
 | 
						|
  EXPECT(assert_equal(expected3,actual3,tol));
 | 
						|
 | 
						|
  //  // Check the joint density P(x4,x1), i.e. with a root variable, factored the other way
 | 
						|
  //  GaussianBayesNet expected4;
 | 
						|
  //  GaussianConditional::shared_ptr
 | 
						|
  //      parent4(new GaussianConditional(X(1), Z_2x1, -1.0*I/sigmax1, ones(2)));
 | 
						|
  //    expected4.push_front(parent4);
 | 
						|
  //  double sig41 = 0.668096;
 | 
						|
  //  Matrix A41 = -0.055794*I;
 | 
						|
  //  push_front(expected4,X(4), Z_2x1, I/sig41, X(1), A41/sig41, sigma);
 | 
						|
  //  GaussianBayesNet actual4 = *bayesTree.jointBayesNet(X(4),X(1));
 | 
						|
  //  EXPECT(assert_equal(expected4,actual4,tol));
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
TEST(GaussianBayesTree, shortcut_overlapping_separator)
 | 
						|
{
 | 
						|
  // Test computing shortcuts when the separator overlaps.  This previously
 | 
						|
  // would have highlighted a problem where information was duplicated.
 | 
						|
 | 
						|
  // Create factor graph:
 | 
						|
  // f(1,2,5)
 | 
						|
  // f(3,4,5)
 | 
						|
  // f(5,6)
 | 
						|
  // f(6,7)
 | 
						|
  GaussianFactorGraph fg;
 | 
						|
  noiseModel::Diagonal::shared_ptr model = noiseModel::Unit::Create(1);
 | 
						|
  fg.add(1, (Matrix(1, 1) <<  1.0).finished(), 3, (Matrix(1, 1) <<  2.0).finished(), 5, (Matrix(1, 1) <<  3.0).finished(), (Vector(1) << 4.0).finished(), model);
 | 
						|
  fg.add(1, (Matrix(1, 1) <<  5.0).finished(), (Vector(1) << 6.0).finished(), model);
 | 
						|
  fg.add(2, (Matrix(1, 1) <<  7.0).finished(), 4, (Matrix(1, 1) <<  8.0).finished(), 5, (Matrix(1, 1) <<  9.0).finished(), (Vector(1) << 10.0).finished(), model);
 | 
						|
  fg.add(2, (Matrix(1, 1) <<  11.0).finished(), (Vector(1) << 12.0).finished(), model);
 | 
						|
  fg.add(5, (Matrix(1, 1) <<  13.0).finished(), 6, (Matrix(1, 1) <<  14.0).finished(), (Vector(1) << 15.0).finished(), model);
 | 
						|
  fg.add(6, (Matrix(1, 1) <<  17.0).finished(), 7, (Matrix(1, 1) <<  18.0).finished(), (Vector(1) << 19.0).finished(), model);
 | 
						|
  fg.add(7, (Matrix(1, 1) <<  20.0).finished(), (Vector(1) << 21.0).finished(), model);
 | 
						|
 | 
						|
  // Eliminate into BayesTree
 | 
						|
  // c(6,7)
 | 
						|
  // c(5|6)
 | 
						|
  //   c(1,2|5)
 | 
						|
  //   c(3,4|5)
 | 
						|
  Ordering ordering(fg.keys());
 | 
						|
  GaussianBayesTree bt = *fg.eliminateMultifrontal(ordering); // eliminate in increasing key order, fg.keys() is sorted.
 | 
						|
 | 
						|
  GaussianFactorGraph joint = *bt.joint(1,2, EliminateQR);
 | 
						|
 | 
						|
  Matrix expectedJointJ = (Matrix(2,3) <<
 | 
						|
    5, 0, 6,
 | 
						|
    0, -11, -12
 | 
						|
    ).finished();
 | 
						|
 | 
						|
  Matrix actualJointJ = joint.augmentedJacobian();
 | 
						|
 | 
						|
  // PR 315: sign of rows in joint are immaterial
 | 
						|
  if (signbit(expectedJointJ(0, 2)) != signbit(actualJointJ(0, 2)))
 | 
						|
    expectedJointJ.row(0) = -expectedJointJ.row(0);
 | 
						|
 | 
						|
  if (signbit(expectedJointJ(1, 2)) != signbit(actualJointJ(1, 2)))
 | 
						|
    expectedJointJ.row(1) = -expectedJointJ.row(1);
 | 
						|
 | 
						|
  EXPECT(assert_equal(expectedJointJ, actualJointJ));
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
int main() { TestResult tr; return TestRegistry::runAllTests(tr);}
 | 
						|
/* ************************************************************************* */
 |