270 lines
12 KiB
C++
270 lines
12 KiB
C++
/* ----------------------------------------------------------------------------
|
|
|
|
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
|
* Atlanta, Georgia 30332-0415
|
|
* All Rights Reserved
|
|
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
|
|
|
* See LICENSE for the license information
|
|
|
|
* -------------------------------------------------------------------------- */
|
|
|
|
/**
|
|
* @file imuFactorsExample
|
|
* @brief Test example for using GTSAM ImuFactor and ImuCombinedFactor navigation code.
|
|
* @author Garrett (ghemann@gmail.com), Luca Carlone
|
|
*/
|
|
|
|
/**
|
|
* Example of use of the imuFactors (imuFactor and combinedImuFactor) in conjunction with GPS
|
|
* - you can test imuFactor (resp. combinedImuFactor) by commenting (resp. uncommenting)
|
|
* the line #define USE_COMBINED (few lines below)
|
|
* - we read IMU and GPS data from a CSV file, with the following format:
|
|
* A row starting with "i" is the first initial position formatted with
|
|
* N, E, D, qx, qY, qZ, qW, velN, velE, velD
|
|
* A row starting with "0" is an imu measurement
|
|
* linAccN, linAccE, linAccD, angVelN, angVelE, angVelD
|
|
* A row starting with "1" is a gps correction formatted with
|
|
* N, E, D, qX, qY, qZ, qW
|
|
* Note that for GPS correction, we're only using the position not the rotation. The
|
|
* rotation is provided in the file for ground truth comparison.
|
|
*/
|
|
|
|
// GTSAM related includes.
|
|
#include <gtsam/navigation/CombinedImuFactor.h>
|
|
#include <gtsam/navigation/GPSFactor.h>
|
|
#include <gtsam/navigation/ImuFactor.h>
|
|
#include <gtsam/slam/dataset.h>
|
|
#include <gtsam/slam/BetweenFactor.h>
|
|
#include <gtsam/slam/PriorFactor.h>
|
|
#include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h>
|
|
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
|
|
#include <gtsam/inference/Symbol.h>
|
|
#include <fstream>
|
|
#include <iostream>
|
|
|
|
// Uncomment line below to use the CombinedIMUFactor as opposed to the standard ImuFactor.
|
|
// #define USE_COMBINED
|
|
|
|
using namespace gtsam;
|
|
using namespace std;
|
|
|
|
using symbol_shorthand::X; // Pose3 (x,y,z,r,p,y)
|
|
using symbol_shorthand::V; // Vel (xdot,ydot,zdot)
|
|
using symbol_shorthand::B; // Bias (ax,ay,az,gx,gy,gz)
|
|
|
|
const string output_filename = "imuFactorExampleResults.csv";
|
|
|
|
// This will either be PreintegratedImuMeasurements (for ImuFactor) or
|
|
// PreintegratedCombinedMeasurements (for CombinedImuFactor).
|
|
PreintegrationType *imu_preintegrated_;
|
|
|
|
int main(int argc, char* argv[])
|
|
{
|
|
string data_filename;
|
|
if (argc < 2) {
|
|
printf("using default CSV file\n");
|
|
data_filename = findExampleDataFile("imuAndGPSdata.csv");
|
|
} else {
|
|
data_filename = argv[1];
|
|
}
|
|
|
|
// Set up output file for plotting errors
|
|
FILE* fp_out = fopen(output_filename.c_str(), "w+");
|
|
fprintf(fp_out, "#time(s),x(m),y(m),z(m),qx,qy,qz,qw,gt_x(m),gt_y(m),gt_z(m),gt_qx,gt_qy,gt_qz,gt_qw\n");
|
|
|
|
// Begin parsing the CSV file. Input the first line for initialization.
|
|
// From there, we'll iterate through the file and we'll preintegrate the IMU
|
|
// or add in the GPS given the input.
|
|
ifstream file(data_filename.c_str());
|
|
string value;
|
|
|
|
// Format is (N,E,D,qX,qY,qZ,qW,velN,velE,velD)
|
|
Eigen::Matrix<double,10,1> initial_state = Eigen::Matrix<double,10,1>::Zero();
|
|
getline(file, value, ','); // i
|
|
for (int i=0; i<9; i++) {
|
|
getline(file, value, ',');
|
|
initial_state(i) = atof(value.c_str());
|
|
}
|
|
getline(file, value, '\n');
|
|
initial_state(9) = atof(value.c_str());
|
|
cout << "initial state:\n" << initial_state.transpose() << "\n\n";
|
|
|
|
// Assemble initial quaternion through gtsam constructor ::quaternion(w,x,y,z);
|
|
Rot3 prior_rotation = Rot3::Quaternion(initial_state(6), initial_state(3),
|
|
initial_state(4), initial_state(5));
|
|
Point3 prior_point(initial_state.head<3>());
|
|
Pose3 prior_pose(prior_rotation, prior_point);
|
|
Vector3 prior_velocity(initial_state.tail<3>());
|
|
imuBias::ConstantBias prior_imu_bias; // assume zero initial bias
|
|
|
|
Values initial_values;
|
|
int correction_count = 0;
|
|
initial_values.insert(X(correction_count), prior_pose);
|
|
initial_values.insert(V(correction_count), prior_velocity);
|
|
initial_values.insert(B(correction_count), prior_imu_bias);
|
|
|
|
// Assemble prior noise model and add it the graph.
|
|
noiseModel::Diagonal::shared_ptr pose_noise_model = noiseModel::Diagonal::Sigmas((Vector(6) << 0.01, 0.01, 0.01, 0.5, 0.5, 0.5).finished()); // rad,rad,rad,m, m, m
|
|
noiseModel::Diagonal::shared_ptr velocity_noise_model = noiseModel::Isotropic::Sigma(3,0.1); // m/s
|
|
noiseModel::Diagonal::shared_ptr bias_noise_model = noiseModel::Isotropic::Sigma(6,1e-3);
|
|
|
|
// Add all prior factors (pose, velocity, bias) to the graph.
|
|
NonlinearFactorGraph *graph = new NonlinearFactorGraph();
|
|
graph->add(PriorFactor<Pose3>(X(correction_count), prior_pose, pose_noise_model));
|
|
graph->add(PriorFactor<Vector3>(V(correction_count), prior_velocity,velocity_noise_model));
|
|
graph->add(PriorFactor<imuBias::ConstantBias>(B(correction_count), prior_imu_bias,bias_noise_model));
|
|
|
|
// We use the sensor specs to build the noise model for the IMU factor.
|
|
double accel_noise_sigma = 0.0003924;
|
|
double gyro_noise_sigma = 0.000205689024915;
|
|
double accel_bias_rw_sigma = 0.004905;
|
|
double gyro_bias_rw_sigma = 0.000001454441043;
|
|
Matrix33 measured_acc_cov = Matrix33::Identity(3,3) * pow(accel_noise_sigma,2);
|
|
Matrix33 measured_omega_cov = Matrix33::Identity(3,3) * pow(gyro_noise_sigma,2);
|
|
Matrix33 integration_error_cov = Matrix33::Identity(3,3)*1e-8; // error committed in integrating position from velocities
|
|
Matrix33 bias_acc_cov = Matrix33::Identity(3,3) * pow(accel_bias_rw_sigma,2);
|
|
Matrix33 bias_omega_cov = Matrix33::Identity(3,3) * pow(gyro_bias_rw_sigma,2);
|
|
Matrix66 bias_acc_omega_int = Matrix::Identity(6,6)*1e-5; // error in the bias used for preintegration
|
|
|
|
boost::shared_ptr<PreintegratedCombinedMeasurements::Params> p = PreintegratedCombinedMeasurements::Params::MakeSharedD(0.0);
|
|
// PreintegrationBase params:
|
|
p->accelerometerCovariance = measured_acc_cov; // acc white noise in continuous
|
|
p->integrationCovariance = integration_error_cov; // integration uncertainty continuous
|
|
// should be using 2nd order integration
|
|
// PreintegratedRotation params:
|
|
p->gyroscopeCovariance = measured_omega_cov; // gyro white noise in continuous
|
|
// PreintegrationCombinedMeasurements params:
|
|
p->biasAccCovariance = bias_acc_cov; // acc bias in continuous
|
|
p->biasOmegaCovariance = bias_omega_cov; // gyro bias in continuous
|
|
p->biasAccOmegaInt = bias_acc_omega_int;
|
|
|
|
#ifdef USE_COMBINED
|
|
imu_preintegrated_ = new PreintegratedCombinedMeasurements(p, prior_imu_bias);
|
|
#else
|
|
imu_preintegrated_ = new PreintegratedImuMeasurements(p, prior_imu_bias);
|
|
#endif
|
|
|
|
// Store previous state for the imu integration and the latest predicted outcome.
|
|
NavState prev_state(prior_pose, prior_velocity);
|
|
NavState prop_state = prev_state;
|
|
imuBias::ConstantBias prev_bias = prior_imu_bias;
|
|
|
|
// Keep track of the total error over the entire run for a simple performance metric.
|
|
double current_position_error = 0.0, current_orientation_error = 0.0;
|
|
|
|
double output_time = 0.0;
|
|
double dt = 0.005; // The real system has noise, but here, results are nearly
|
|
// exactly the same, so keeping this for simplicity.
|
|
|
|
// All priors have been set up, now iterate through the data file.
|
|
while (file.good()) {
|
|
|
|
// Parse out first value
|
|
getline(file, value, ',');
|
|
int type = atoi(value.c_str());
|
|
|
|
if (type == 0) { // IMU measurement
|
|
Eigen::Matrix<double,6,1> imu = Eigen::Matrix<double,6,1>::Zero();
|
|
for (int i=0; i<5; ++i) {
|
|
getline(file, value, ',');
|
|
imu(i) = atof(value.c_str());
|
|
}
|
|
getline(file, value, '\n');
|
|
imu(5) = atof(value.c_str());
|
|
|
|
// Adding the IMU preintegration.
|
|
imu_preintegrated_->integrateMeasurement(imu.head<3>(), imu.tail<3>(), dt);
|
|
|
|
} else if (type == 1) { // GPS measurement
|
|
Eigen::Matrix<double,7,1> gps = Eigen::Matrix<double,7,1>::Zero();
|
|
for (int i=0; i<6; ++i) {
|
|
getline(file, value, ',');
|
|
gps(i) = atof(value.c_str());
|
|
}
|
|
getline(file, value, '\n');
|
|
gps(6) = atof(value.c_str());
|
|
|
|
correction_count++;
|
|
|
|
// Adding IMU factor and GPS factor and optimizing.
|
|
#ifdef USE_COMBINED
|
|
PreintegratedCombinedMeasurements *preint_imu_combined = dynamic_cast<PreintegratedCombinedMeasurements*>(imu_preintegrated_);
|
|
CombinedImuFactor imu_factor(X(correction_count-1), V(correction_count-1),
|
|
X(correction_count ), V(correction_count ),
|
|
B(correction_count-1), B(correction_count ),
|
|
*preint_imu_combined);
|
|
graph->add(imu_factor);
|
|
#else
|
|
PreintegratedImuMeasurements *preint_imu = dynamic_cast<PreintegratedImuMeasurements*>(imu_preintegrated_);
|
|
ImuFactor imu_factor(X(correction_count-1), V(correction_count-1),
|
|
X(correction_count ), V(correction_count ),
|
|
B(correction_count-1),
|
|
*preint_imu);
|
|
graph->add(imu_factor);
|
|
imuBias::ConstantBias zero_bias(Vector3(0, 0, 0), Vector3(0, 0, 0));
|
|
graph->add(BetweenFactor<imuBias::ConstantBias>(B(correction_count-1),
|
|
B(correction_count ),
|
|
zero_bias, bias_noise_model));
|
|
#endif
|
|
|
|
noiseModel::Diagonal::shared_ptr correction_noise = noiseModel::Isotropic::Sigma(3,1.0);
|
|
GPSFactor gps_factor(X(correction_count),
|
|
Point3(gps(0), // N,
|
|
gps(1), // E,
|
|
gps(2)), // D,
|
|
correction_noise);
|
|
graph->add(gps_factor);
|
|
|
|
// Now optimize and compare results.
|
|
prop_state = imu_preintegrated_->predict(prev_state, prev_bias);
|
|
initial_values.insert(X(correction_count), prop_state.pose());
|
|
initial_values.insert(V(correction_count), prop_state.v());
|
|
initial_values.insert(B(correction_count), prev_bias);
|
|
|
|
LevenbergMarquardtOptimizer optimizer(*graph, initial_values);
|
|
Values result = optimizer.optimize();
|
|
|
|
// Overwrite the beginning of the preintegration for the next step.
|
|
prev_state = NavState(result.at<Pose3>(X(correction_count)),
|
|
result.at<Vector3>(V(correction_count)));
|
|
prev_bias = result.at<imuBias::ConstantBias>(B(correction_count));
|
|
|
|
// Reset the preintegration object.
|
|
imu_preintegrated_->resetIntegrationAndSetBias(prev_bias);
|
|
|
|
// Print out the position and orientation error for comparison.
|
|
Vector3 gtsam_position = prev_state.pose().translation();
|
|
Vector3 position_error = gtsam_position - gps.head<3>();
|
|
current_position_error = position_error.norm();
|
|
|
|
Quaternion gtsam_quat = prev_state.pose().rotation().toQuaternion();
|
|
Quaternion gps_quat(gps(6), gps(3), gps(4), gps(5));
|
|
Quaternion quat_error = gtsam_quat * gps_quat.inverse();
|
|
quat_error.normalize();
|
|
Vector3 euler_angle_error(quat_error.x()*2,
|
|
quat_error.y()*2,
|
|
quat_error.z()*2);
|
|
current_orientation_error = euler_angle_error.norm();
|
|
|
|
// display statistics
|
|
cout << "Position error:" << current_position_error << "\t " << "Angular error:" << current_orientation_error << "\n";
|
|
|
|
fprintf(fp_out, "%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f\n",
|
|
output_time, gtsam_position(0), gtsam_position(1), gtsam_position(2),
|
|
gtsam_quat.x(), gtsam_quat.y(), gtsam_quat.z(), gtsam_quat.w(),
|
|
gps(0), gps(1), gps(2),
|
|
gps_quat.x(), gps_quat.y(), gps_quat.z(), gps_quat.w());
|
|
|
|
output_time += 1.0;
|
|
|
|
} else {
|
|
cerr << "ERROR parsing file\n";
|
|
return 1;
|
|
}
|
|
}
|
|
fclose(fp_out);
|
|
cout << "Complete, results written to " << output_filename << "\n\n";;
|
|
return 0;
|
|
}
|