120 lines
4.5 KiB
C++
120 lines
4.5 KiB
C++
/* ----------------------------------------------------------------------------
|
|
|
|
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
|
* Atlanta, Georgia 30332-0415
|
|
* All Rights Reserved
|
|
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
|
|
|
* See LICENSE for the license information
|
|
|
|
* -------------------------------------------------------------------------- */
|
|
|
|
/**
|
|
* @file DiscreteBayesNet_FG.cpp
|
|
* @brief Discrete Bayes Net example using Factor Graphs
|
|
* @author Abhijit
|
|
* @date Jun 4, 2012
|
|
*
|
|
* We use the famous Rain/Cloudy/Sprinkler Example of [Russell & Norvig, 2009, p529]
|
|
* You may be familiar with other graphical model packages like BNT (available
|
|
* at http://bnt.googlecode.com/svn/trunk/docs/usage.html) where this is used as an
|
|
* example. The following demo is same as that in the above link, except that
|
|
* everything is using GTSAM.
|
|
*/
|
|
|
|
#include <gtsam/discrete/DiscreteFactorGraph.h>
|
|
#include <gtsam/discrete/DiscreteSequentialSolver.h>
|
|
#include <iomanip>
|
|
|
|
using namespace std;
|
|
using namespace gtsam;
|
|
|
|
int main(int argc, char **argv) {
|
|
|
|
// We assume binary state variables
|
|
// we have 0 == "False" and 1 == "True"
|
|
const size_t nrStates = 2;
|
|
|
|
// define variables
|
|
DiscreteKey Cloudy(1, nrStates), Sprinkler(2, nrStates), Rain(3, nrStates),
|
|
WetGrass(4, nrStates);
|
|
|
|
// create Factor Graph of the bayes net
|
|
DiscreteFactorGraph graph;
|
|
|
|
// add factors
|
|
graph.add(Cloudy, "0.5 0.5"); //P(Cloudy)
|
|
graph.add(Cloudy & Sprinkler, "0.5 0.5 0.9 0.1"); //P(Sprinkler | Cloudy)
|
|
graph.add(Cloudy & Rain, "0.8 0.2 0.2 0.8"); //P(Rain | Cloudy)
|
|
graph.add(Sprinkler & Rain & WetGrass,
|
|
"1 0 0.1 0.9 0.1 0.9 0.001 0.99"); //P(WetGrass | Sprinkler, Rain)
|
|
|
|
// Alternatively we can also create a DiscreteBayesNet, add DiscreteConditional
|
|
// factors and create a FactorGraph from it. (See testDiscreteBayesNet.cpp)
|
|
|
|
// Since this is a relatively small distribution, we can as well print
|
|
// the whole distribution..
|
|
cout << "Distribution of Example: " << endl;
|
|
cout << setw(11) << "Cloudy(C)" << setw(14) << "Sprinkler(S)" << setw(10)
|
|
<< "Rain(R)" << setw(14) << "WetGrass(W)" << setw(15) << "P(C,S,R,W)"
|
|
<< endl;
|
|
for (size_t a = 0; a < nrStates; a++)
|
|
for (size_t m = 0; m < nrStates; m++)
|
|
for (size_t h = 0; h < nrStates; h++)
|
|
for (size_t c = 0; c < nrStates; c++) {
|
|
DiscreteFactor::Values values;
|
|
values[Cloudy.first] = c;
|
|
values[Sprinkler.first] = h;
|
|
values[Rain.first] = m;
|
|
values[WetGrass.first] = a;
|
|
double prodPot = graph(values);
|
|
cout << boolalpha << setw(8) << (bool) c << setw(14)
|
|
<< (bool) h << setw(12) << (bool) m << setw(13)
|
|
<< (bool) a << setw(16) << prodPot << endl;
|
|
}
|
|
|
|
|
|
// "Most Probable Explanation", i.e., configuration with largest value
|
|
DiscreteSequentialSolver solver(graph);
|
|
DiscreteFactor::sharedValues optimalDecoding = solver.optimize();
|
|
cout <<"\nMost Probable Explanation (MPE):" << endl;
|
|
cout << boolalpha << "Cloudy = " << (bool)(*optimalDecoding)[Cloudy.first]
|
|
<< " Sprinkler = " << (bool)(*optimalDecoding)[Sprinkler.first]
|
|
<< " Rain = " << boolalpha << (bool)(*optimalDecoding)[Rain.first]
|
|
<< " WetGrass = " << (bool)(*optimalDecoding)[WetGrass.first]<< endl;
|
|
|
|
|
|
// "Inference" We show an inference query like: probability that the Sprinkler was on;
|
|
// given that the grass is wet i.e. P( S | W=1) =?
|
|
cout << "\nInference Query: Probability of Sprinkler being on given Grass is Wet" << endl;
|
|
|
|
// Method 1: we can compute the joint marginal P(S,W) and from that we can compute
|
|
// P(S | W=1) = P(S,W=1)/P(W=1) We do this in following three steps..
|
|
|
|
//Step1: Compute P(S,W)
|
|
DiscreteFactorGraph jointFG;
|
|
jointFG = *solver.jointFactorGraph(DiscreteKeys(Sprinkler & WetGrass).indices());
|
|
DecisionTreeFactor probSW = jointFG.product();
|
|
|
|
//Step2: Compute P(W)
|
|
DiscreteFactor::shared_ptr probW = solver.marginalFactor(WetGrass.first);
|
|
|
|
//Step3: Computer P(S | W=1) = P(S,W=1)/P(W=1)
|
|
DiscreteFactor::Values values;
|
|
values[WetGrass.first] = 1;
|
|
|
|
//print P(S=0|W=1)
|
|
values[Sprinkler.first] = 0;
|
|
cout << "P(S=0|W=1) = " << probSW(values)/(*probW)(values) << endl;
|
|
|
|
//print P(S=1|W=1)
|
|
values[Sprinkler.first] = 1;
|
|
cout << "P(S=1|W=1) = " << probSW(values)/(*probW)(values) << endl;
|
|
|
|
// TODO: Method 2 : One way is to modify the factor graph to
|
|
// incorporate the evidence node and compute the marginal
|
|
// TODO: graph.addEvidence(Cloudy,0);
|
|
|
|
return 0;
|
|
}
|