505 lines
23 KiB
C++
505 lines
23 KiB
C++
#include <Eigen/Dense>
|
|
|
|
#include <iostream>
|
|
#include <stdexcept>
|
|
#include <complex>
|
|
|
|
typedef ::std::complex< double > __pyx_t_double_complex;
|
|
typedef ::std::complex< float > __pyx_t_float_complex;
|
|
|
|
#include "conversions_api.h"
|
|
|
|
#ifndef EIGENCY_CPP
|
|
#define EIGENCY_CPP
|
|
|
|
namespace eigency {
|
|
|
|
template<typename Scalar>
|
|
inline PyArrayObject *_ndarray_view(Scalar *, long rows, long cols, bool is_row_major, long outer_stride=0, long inner_stride=0);
|
|
template<typename Scalar>
|
|
inline PyArrayObject *_ndarray_copy(const Scalar *, long rows, long cols, bool is_row_major, long outer_stride=0, long inner_stride=0);
|
|
|
|
// Strides:
|
|
// Eigen and numpy differ in their way of dealing with strides. Eigen has the concept of outer and
|
|
// inner strides, which are dependent on whether the array/matrix is row-major of column-major:
|
|
// Inner stride: denotes the offset between succeeding elements in each row (row-major) or column (column-major).
|
|
// Outer stride: denotes the offset between succeeding rows (row-major) or succeeding columns (column-major).
|
|
// In contrast, numpy's stride is simply a measure of how fast each dimension should be incremented.
|
|
// Consequently, a switch in numpy storage order from row-major to column-major involves a switch
|
|
// in strides, while it does not affect the stride in Eigen.
|
|
template<>
|
|
inline PyArrayObject *_ndarray_view<double>(double *data, long rows, long cols, bool is_row_major, long outer_stride, long inner_stride) {
|
|
if (is_row_major) {
|
|
// Eigen row-major mode: row_stride=outer_stride, and col_stride=inner_stride
|
|
// If no stride is given, the row_stride is set to the number of columns.
|
|
return ndarray_double_C(data, rows, cols, outer_stride>0?outer_stride:cols, inner_stride>0?inner_stride:1);
|
|
} else {
|
|
// Eigen column-major mode: row_stride=outer_stride, and col_stride=inner_stride
|
|
// If no stride is given, the cow_stride is set to the number of rows.
|
|
return ndarray_double_F(data, rows, cols, inner_stride>0?inner_stride:1, outer_stride>0?outer_stride:rows);
|
|
}
|
|
}
|
|
template<>
|
|
inline PyArrayObject *_ndarray_copy<double>(const double *data, long rows, long cols, bool is_row_major, long outer_stride, long inner_stride) {
|
|
if (is_row_major)
|
|
return ndarray_copy_double_C(data, rows, cols, outer_stride>0?outer_stride:cols, inner_stride>0?inner_stride:1);
|
|
else
|
|
return ndarray_copy_double_F(data, rows, cols, inner_stride>0?inner_stride:1, outer_stride>0?outer_stride:rows);
|
|
}
|
|
|
|
template<>
|
|
inline PyArrayObject *_ndarray_view<float>(float *data, long rows, long cols, bool is_row_major, long outer_stride, long inner_stride) {
|
|
if (is_row_major)
|
|
return ndarray_float_C(data, rows, cols, outer_stride>0?outer_stride:cols, inner_stride>0?inner_stride:1);
|
|
else
|
|
return ndarray_float_F(data, rows, cols, inner_stride>0?inner_stride:1, outer_stride>0?outer_stride:rows);
|
|
}
|
|
template<>
|
|
inline PyArrayObject *_ndarray_copy<float>(const float *data, long rows, long cols, bool is_row_major, long outer_stride, long inner_stride) {
|
|
if (is_row_major)
|
|
return ndarray_copy_float_C(data, rows, cols, outer_stride>0?outer_stride:cols, inner_stride>0?inner_stride:1);
|
|
else
|
|
return ndarray_copy_float_F(data, rows, cols, inner_stride>0?inner_stride:1, outer_stride>0?outer_stride:rows);
|
|
}
|
|
|
|
template<>
|
|
inline PyArrayObject *_ndarray_view<long>(long *data, long rows, long cols, bool is_row_major, long outer_stride, long inner_stride) {
|
|
if (is_row_major)
|
|
return ndarray_long_C(data, rows, cols, outer_stride>0?outer_stride:cols, inner_stride>0?inner_stride:1);
|
|
else
|
|
return ndarray_long_F(data, rows, cols, inner_stride>0?inner_stride:1, outer_stride>0?outer_stride:rows);
|
|
}
|
|
template<>
|
|
inline PyArrayObject *_ndarray_copy<long>(const long *data, long rows, long cols, bool is_row_major, long outer_stride, long inner_stride) {
|
|
if (is_row_major)
|
|
return ndarray_copy_long_C(data, rows, cols, outer_stride>0?outer_stride:cols, inner_stride>0?inner_stride:1);
|
|
else
|
|
return ndarray_copy_long_F(data, rows, cols, inner_stride>0?inner_stride:1, outer_stride>0?outer_stride:rows);
|
|
}
|
|
|
|
template<>
|
|
inline PyArrayObject *_ndarray_view<unsigned long>(unsigned long *data, long rows, long cols, bool is_row_major, long outer_stride, long inner_stride) {
|
|
if (is_row_major)
|
|
return ndarray_ulong_C(data, rows, cols, outer_stride>0?outer_stride:cols, inner_stride>0?inner_stride:1);
|
|
else
|
|
return ndarray_ulong_F(data, rows, cols, inner_stride>0?inner_stride:1, outer_stride>0?outer_stride:rows);
|
|
}
|
|
template<>
|
|
inline PyArrayObject *_ndarray_copy<unsigned long>(const unsigned long *data, long rows, long cols, bool is_row_major, long outer_stride, long inner_stride) {
|
|
if (is_row_major)
|
|
return ndarray_copy_ulong_C(data, rows, cols, outer_stride>0?outer_stride:cols, inner_stride>0?inner_stride:1);
|
|
else
|
|
return ndarray_copy_ulong_F(data, rows, cols, inner_stride>0?inner_stride:1, outer_stride>0?outer_stride:rows);
|
|
}
|
|
|
|
template<>
|
|
inline PyArrayObject *_ndarray_view<int>(int *data, long rows, long cols, bool is_row_major, long outer_stride, long inner_stride) {
|
|
if (is_row_major)
|
|
return ndarray_int_C(data, rows, cols, outer_stride>0?outer_stride:cols, inner_stride>0?inner_stride:1);
|
|
else
|
|
return ndarray_int_F(data, rows, cols, inner_stride>0?inner_stride:1, outer_stride>0?outer_stride:rows);
|
|
}
|
|
template<>
|
|
inline PyArrayObject *_ndarray_copy<int>(const int *data, long rows, long cols, bool is_row_major, long outer_stride, long inner_stride) {
|
|
if (is_row_major)
|
|
return ndarray_copy_int_C(data, rows, cols, outer_stride>0?outer_stride:cols, inner_stride>0?inner_stride:1);
|
|
else
|
|
return ndarray_copy_int_F(data, rows, cols, inner_stride>0?inner_stride:1, outer_stride>0?outer_stride:rows);
|
|
}
|
|
|
|
template<>
|
|
inline PyArrayObject *_ndarray_view<unsigned int>(unsigned int *data, long rows, long cols, bool is_row_major, long outer_stride, long inner_stride) {
|
|
if (is_row_major)
|
|
return ndarray_uint_C(data, rows, cols, outer_stride>0?outer_stride:cols, inner_stride>0?inner_stride:1);
|
|
else
|
|
return ndarray_uint_F(data, rows, cols, inner_stride>0?inner_stride:1, outer_stride>0?outer_stride:rows);
|
|
}
|
|
template<>
|
|
inline PyArrayObject *_ndarray_copy<unsigned int>(const unsigned int *data, long rows, long cols, bool is_row_major, long outer_stride, long inner_stride) {
|
|
if (is_row_major)
|
|
return ndarray_copy_uint_C(data, rows, cols, outer_stride>0?outer_stride:cols, inner_stride>0?inner_stride:1);
|
|
else
|
|
return ndarray_copy_uint_F(data, rows, cols, inner_stride>0?inner_stride:1, outer_stride>0?outer_stride:rows);
|
|
}
|
|
|
|
template<>
|
|
inline PyArrayObject *_ndarray_view<short>(short *data, long rows, long cols, bool is_row_major, long outer_stride, long inner_stride) {
|
|
if (is_row_major)
|
|
return ndarray_short_C(data, rows, cols, outer_stride>0?outer_stride:cols, inner_stride>0?inner_stride:1);
|
|
else
|
|
return ndarray_short_F(data, rows, cols, inner_stride>0?inner_stride:1, outer_stride>0?outer_stride:rows);
|
|
}
|
|
template<>
|
|
inline PyArrayObject *_ndarray_copy<short>(const short *data, long rows, long cols, bool is_row_major, long outer_stride, long inner_stride) {
|
|
if (is_row_major)
|
|
return ndarray_copy_short_C(data, rows, cols, outer_stride>0?outer_stride:cols, inner_stride>0?inner_stride:1);
|
|
else
|
|
return ndarray_copy_short_F(data, rows, cols, inner_stride>0?inner_stride:1, outer_stride>0?outer_stride:rows);
|
|
}
|
|
|
|
template<>
|
|
inline PyArrayObject *_ndarray_view<unsigned short>(unsigned short *data, long rows, long cols, bool is_row_major, long outer_stride, long inner_stride) {
|
|
if (is_row_major)
|
|
return ndarray_ushort_C(data, rows, cols, outer_stride>0?outer_stride:cols, inner_stride>0?inner_stride:1);
|
|
else
|
|
return ndarray_ushort_F(data, rows, cols, inner_stride>0?inner_stride:1, outer_stride>0?outer_stride:rows);
|
|
}
|
|
template<>
|
|
inline PyArrayObject *_ndarray_copy<unsigned short>(const unsigned short *data, long rows, long cols, bool is_row_major, long outer_stride, long inner_stride) {
|
|
if (is_row_major)
|
|
return ndarray_copy_ushort_C(data, rows, cols, outer_stride>0?outer_stride:cols, inner_stride>0?inner_stride:1);
|
|
else
|
|
return ndarray_copy_ushort_F(data, rows, cols, inner_stride>0?inner_stride:1, outer_stride>0?outer_stride:rows);
|
|
}
|
|
|
|
template<>
|
|
inline PyArrayObject *_ndarray_view<signed char>(signed char *data, long rows, long cols, bool is_row_major, long outer_stride, long inner_stride) {
|
|
if (is_row_major)
|
|
return ndarray_schar_C(data, rows, cols, outer_stride>0?outer_stride:cols, inner_stride>0?inner_stride:1);
|
|
else
|
|
return ndarray_schar_F(data, rows, cols, inner_stride>0?inner_stride:1, outer_stride>0?outer_stride:rows);
|
|
}
|
|
template<>
|
|
inline PyArrayObject *_ndarray_copy<signed char>(const signed char *data, long rows, long cols, bool is_row_major, long outer_stride, long inner_stride) {
|
|
if (is_row_major)
|
|
return ndarray_copy_schar_C(data, rows, cols, outer_stride>0?outer_stride:cols, inner_stride>0?inner_stride:1);
|
|
else
|
|
return ndarray_copy_schar_F(data, rows, cols, inner_stride>0?inner_stride:1, outer_stride>0?outer_stride:rows);
|
|
}
|
|
|
|
template<>
|
|
inline PyArrayObject *_ndarray_view<unsigned char>(unsigned char *data, long rows, long cols, bool is_row_major, long outer_stride, long inner_stride) {
|
|
if (is_row_major)
|
|
return ndarray_uchar_C(data, rows, cols, outer_stride>0?outer_stride:cols, inner_stride>0?inner_stride:1);
|
|
else
|
|
return ndarray_uchar_F(data, rows, cols, inner_stride>0?inner_stride:1, outer_stride>0?outer_stride:rows);
|
|
}
|
|
template<>
|
|
inline PyArrayObject *_ndarray_copy<unsigned char>(const unsigned char *data, long rows, long cols, bool is_row_major, long outer_stride, long inner_stride) {
|
|
if (is_row_major)
|
|
return ndarray_copy_uchar_C(data, rows, cols, outer_stride>0?outer_stride:cols, inner_stride>0?inner_stride:1);
|
|
else
|
|
return ndarray_copy_uchar_F(data, rows, cols, inner_stride>0?inner_stride:1, outer_stride>0?outer_stride:rows);
|
|
}
|
|
|
|
template<>
|
|
inline PyArrayObject *_ndarray_view<std::complex<double> >(std::complex<double> *data, long rows, long cols, bool is_row_major, long outer_stride, long inner_stride) {
|
|
if (is_row_major)
|
|
return ndarray_complex_double_C(data, rows, cols, outer_stride>0?outer_stride:cols, inner_stride>0?inner_stride:1);
|
|
else
|
|
return ndarray_complex_double_F(data, rows, cols, inner_stride>0?inner_stride:1, outer_stride>0?outer_stride:rows);
|
|
}
|
|
template<>
|
|
inline PyArrayObject *_ndarray_copy<std::complex<double> >(const std::complex<double> *data, long rows, long cols, bool is_row_major, long outer_stride, long inner_stride) {
|
|
if (is_row_major)
|
|
return ndarray_copy_complex_double_C(data, rows, cols, outer_stride>0?outer_stride:cols, inner_stride>0?inner_stride:1);
|
|
else
|
|
return ndarray_copy_complex_double_F(data, rows, cols, inner_stride>0?inner_stride:1, outer_stride>0?outer_stride:rows);
|
|
}
|
|
|
|
template<>
|
|
inline PyArrayObject *_ndarray_view<std::complex<float> >(std::complex<float> *data, long rows, long cols, bool is_row_major, long outer_stride, long inner_stride) {
|
|
if (is_row_major)
|
|
return ndarray_complex_float_C(data, rows, cols, outer_stride>0?outer_stride:cols, inner_stride>0?inner_stride:1);
|
|
else
|
|
return ndarray_complex_float_F(data, rows, cols, inner_stride>0?inner_stride:1, outer_stride>0?outer_stride:rows);
|
|
}
|
|
template<>
|
|
inline PyArrayObject *_ndarray_copy<std::complex<float> >(const std::complex<float> *data, long rows, long cols, bool is_row_major, long outer_stride, long inner_stride) {
|
|
if (is_row_major)
|
|
return ndarray_copy_complex_float_C(data, rows, cols, outer_stride>0?outer_stride:cols, inner_stride>0?inner_stride:1);
|
|
else
|
|
return ndarray_copy_complex_float_F(data, rows, cols, inner_stride>0?inner_stride:1, outer_stride>0?outer_stride:rows);
|
|
}
|
|
|
|
|
|
template <typename Derived>
|
|
inline PyArrayObject *ndarray(Eigen::PlainObjectBase<Derived> &m) {
|
|
import_gtsam_eigency__conversions();
|
|
return _ndarray_view(m.data(), m.rows(), m.cols(), m.IsRowMajor);
|
|
}
|
|
// If C++11 is available, check if m is an r-value reference, in
|
|
// which case a copy should always be made
|
|
#if __cplusplus >= 201103L
|
|
template <typename Derived>
|
|
inline PyArrayObject *ndarray(Eigen::PlainObjectBase<Derived> &&m) {
|
|
import_gtsam_eigency__conversions();
|
|
return _ndarray_copy(m.data(), m.rows(), m.cols(), m.IsRowMajor);
|
|
}
|
|
#endif
|
|
template <typename Derived>
|
|
inline PyArrayObject *ndarray(const Eigen::PlainObjectBase<Derived> &m) {
|
|
import_gtsam_eigency__conversions();
|
|
return _ndarray_copy(m.data(), m.rows(), m.cols(), m.IsRowMajor);
|
|
}
|
|
template <typename Derived>
|
|
inline PyArrayObject *ndarray_view(Eigen::PlainObjectBase<Derived> &m) {
|
|
import_gtsam_eigency__conversions();
|
|
return _ndarray_view(m.data(), m.rows(), m.cols(), m.IsRowMajor);
|
|
}
|
|
template <typename Derived>
|
|
inline PyArrayObject *ndarray_view(const Eigen::PlainObjectBase<Derived> &m) {
|
|
import_gtsam_eigency__conversions();
|
|
return _ndarray_view(const_cast<typename Derived::Scalar*>(m.data()), m.rows(), m.cols(), m.IsRowMajor);
|
|
}
|
|
template <typename Derived>
|
|
inline PyArrayObject *ndarray_copy(const Eigen::PlainObjectBase<Derived> &m) {
|
|
import_gtsam_eigency__conversions();
|
|
return _ndarray_copy(m.data(), m.rows(), m.cols(), m.IsRowMajor);
|
|
}
|
|
|
|
template <typename Derived, int MapOptions, typename Stride>
|
|
inline PyArrayObject *ndarray(Eigen::Map<Derived, MapOptions, Stride> &m) {
|
|
import_gtsam_eigency__conversions();
|
|
return _ndarray_view(m.data(), m.rows(), m.cols(), m.IsRowMajor, m.outerStride(), m.innerStride());
|
|
}
|
|
template <typename Derived, int MapOptions, typename Stride>
|
|
inline PyArrayObject *ndarray(const Eigen::Map<Derived, MapOptions, Stride> &m) {
|
|
import_gtsam_eigency__conversions();
|
|
// Since this is a map, we assume that ownership is correctly taken care
|
|
// of, and we avoid taking a copy
|
|
return _ndarray_view(const_cast<typename Derived::Scalar*>(m.data()), m.rows(), m.cols(), m.IsRowMajor, m.outerStride(), m.innerStride());
|
|
}
|
|
template <typename Derived, int MapOptions, typename Stride>
|
|
inline PyArrayObject *ndarray_view(Eigen::Map<Derived, MapOptions, Stride> &m) {
|
|
import_gtsam_eigency__conversions();
|
|
return _ndarray_view(m.data(), m.rows(), m.cols(), m.IsRowMajor, m.outerStride(), m.innerStride());
|
|
}
|
|
template <typename Derived, int MapOptions, typename Stride>
|
|
inline PyArrayObject *ndarray_view(const Eigen::Map<Derived, MapOptions, Stride> &m) {
|
|
import_gtsam_eigency__conversions();
|
|
return _ndarray_view(const_cast<typename Derived::Scalar*>(m.data()), m.rows(), m.cols(), m.IsRowMajor, m.outerStride(), m.innerStride());
|
|
}
|
|
template <typename Derived, int MapOptions, typename Stride>
|
|
inline PyArrayObject *ndarray_copy(const Eigen::Map<Derived, MapOptions, Stride> &m) {
|
|
import_gtsam_eigency__conversions();
|
|
return _ndarray_copy(m.data(), m.rows(), m.cols(), m.IsRowMajor, m.outerStride(), m.innerStride());
|
|
}
|
|
|
|
|
|
template <typename MatrixType,
|
|
int _MapOptions = Eigen::Unaligned,
|
|
typename _StrideType=Eigen::Stride<0,0> >
|
|
class MapBase: public Eigen::Map<MatrixType, _MapOptions, _StrideType> {
|
|
public:
|
|
typedef Eigen::Map<MatrixType, _MapOptions, _StrideType> Base;
|
|
typedef typename Base::Scalar Scalar;
|
|
|
|
MapBase(Scalar* data,
|
|
long rows,
|
|
long cols,
|
|
_StrideType stride=_StrideType())
|
|
: Base(data,
|
|
// If both dimensions are dynamic or dimensions match, accept dimensions as they are
|
|
((Base::RowsAtCompileTime==Eigen::Dynamic && Base::ColsAtCompileTime==Eigen::Dynamic) ||
|
|
(Base::RowsAtCompileTime==rows && Base::ColsAtCompileTime==cols))
|
|
? rows
|
|
// otherwise, test if swapping them makes them fit
|
|
: ((Base::RowsAtCompileTime==cols || Base::ColsAtCompileTime==rows)
|
|
? cols
|
|
: rows),
|
|
((Base::RowsAtCompileTime==Eigen::Dynamic && Base::ColsAtCompileTime==Eigen::Dynamic) ||
|
|
(Base::RowsAtCompileTime==rows && Base::ColsAtCompileTime==cols))
|
|
? cols
|
|
: ((Base::RowsAtCompileTime==cols || Base::ColsAtCompileTime==rows)
|
|
? rows
|
|
: cols),
|
|
stride
|
|
) {}
|
|
|
|
MapBase &operator=(const MatrixType &other) {
|
|
Base::operator=(other);
|
|
return *this;
|
|
}
|
|
|
|
virtual ~MapBase() { }
|
|
};
|
|
|
|
|
|
template <template<class,int,int,int,int,int> class EigencyDenseBase,
|
|
typename Scalar,
|
|
int _Rows, int _Cols,
|
|
int _Options = Eigen::AutoAlign |
|
|
#if defined(__GNUC__) && __GNUC__==3 && __GNUC_MINOR__==4
|
|
// workaround a bug in at least gcc 3.4.6
|
|
// the innermost ?: ternary operator is misparsed. We write it slightly
|
|
// differently and this makes gcc 3.4.6 happy, but it's ugly.
|
|
// The error would only show up with EIGEN_DEFAULT_TO_ROW_MAJOR is defined
|
|
// (when EIGEN_DEFAULT_MATRIX_STORAGE_ORDER_OPTION is RowMajor)
|
|
( (_Rows==1 && _Cols!=1) ? Eigen::RowMajor
|
|
// EIGEN_DEFAULT_MATRIX_STORAGE_ORDER_OPTION contains explicit namespace since Eigen 3.1.19
|
|
#if EIGEN_VERSION_AT_LEAST(3,2,90)
|
|
: !(_Cols==1 && _Rows!=1) ? EIGEN_DEFAULT_MATRIX_STORAGE_ORDER_OPTION
|
|
#else
|
|
: !(_Cols==1 && _Rows!=1) ? Eigen::EIGEN_DEFAULT_MATRIX_STORAGE_ORDER_OPTION
|
|
#endif
|
|
: ColMajor ),
|
|
#else
|
|
( (_Rows==1 && _Cols!=1) ? Eigen::RowMajor
|
|
: (_Cols==1 && _Rows!=1) ? Eigen::ColMajor
|
|
// EIGEN_DEFAULT_MATRIX_STORAGE_ORDER_OPTION contains explicit namespace since Eigen 3.1.19
|
|
#if EIGEN_VERSION_AT_LEAST(3,2,90)
|
|
: EIGEN_DEFAULT_MATRIX_STORAGE_ORDER_OPTION ),
|
|
#else
|
|
: Eigen::EIGEN_DEFAULT_MATRIX_STORAGE_ORDER_OPTION ),
|
|
#endif
|
|
#endif
|
|
int _MapOptions = Eigen::Unaligned,
|
|
int _StrideOuter=0, int _StrideInner=0,
|
|
int _MaxRows = _Rows,
|
|
int _MaxCols = _Cols>
|
|
class FlattenedMap: public MapBase<EigencyDenseBase<Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>, _MapOptions, Eigen::Stride<_StrideOuter, _StrideInner> > {
|
|
public:
|
|
typedef MapBase<EigencyDenseBase<Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>, _MapOptions, Eigen::Stride<_StrideOuter, _StrideInner> > Base;
|
|
|
|
FlattenedMap()
|
|
: Base(NULL, 0, 0),
|
|
object_(NULL) {}
|
|
|
|
FlattenedMap(Scalar *data, long rows, long cols, long outer_stride=0, long inner_stride=0)
|
|
: Base(data, rows, cols,
|
|
Eigen::Stride<_StrideOuter, _StrideInner>(outer_stride, inner_stride)),
|
|
object_(NULL) {
|
|
}
|
|
|
|
FlattenedMap(PyArrayObject *object)
|
|
: Base((Scalar *)((PyArrayObject*)object)->data,
|
|
// : Base(_from_numpy<Scalar>((PyArrayObject*)object),
|
|
(((PyArrayObject*)object)->nd == 2) ? ((PyArrayObject*)object)->dimensions[0] : 1,
|
|
(((PyArrayObject*)object)->nd == 2) ? ((PyArrayObject*)object)->dimensions[1] : ((PyArrayObject*)object)->dimensions[0],
|
|
Eigen::Stride<_StrideOuter, _StrideInner>(_StrideOuter != Eigen::Dynamic ? _StrideOuter : (((PyArrayObject*)object)->nd == 2) ? ((PyArrayObject*)object)->dimensions[0] : 1,
|
|
_StrideInner != Eigen::Dynamic ? _StrideInner : (((PyArrayObject*)object)->nd == 2) ? ((PyArrayObject*)object)->dimensions[1] : ((PyArrayObject*)object)->dimensions[0])),
|
|
object_(object) {
|
|
|
|
if (((PyObject*)object != Py_None) && !PyArray_ISONESEGMENT(object))
|
|
throw std::invalid_argument("Numpy array must be a in one contiguous segment to be able to be transferred to a Eigen Map.");
|
|
|
|
Py_XINCREF(object_);
|
|
}
|
|
FlattenedMap &operator=(const FlattenedMap &other) {
|
|
if (other.object_) {
|
|
new (this) FlattenedMap(other.object_);
|
|
} else {
|
|
// Replace the memory that we point to (not a memory allocation)
|
|
new (this) FlattenedMap(const_cast<Scalar*>(other.data()),
|
|
other.rows(),
|
|
other.cols(),
|
|
other.outerStride(),
|
|
other.innerStride());
|
|
}
|
|
|
|
return *this;
|
|
}
|
|
|
|
operator Base() const {
|
|
return static_cast<Base>(*this);
|
|
}
|
|
|
|
operator Base&() const {
|
|
return static_cast<Base&>(*this);
|
|
}
|
|
|
|
operator EigencyDenseBase<Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>() const {
|
|
return EigencyDenseBase<Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>(static_cast<Base>(*this));
|
|
}
|
|
|
|
virtual ~FlattenedMap() {
|
|
Py_XDECREF(object_);
|
|
}
|
|
|
|
private:
|
|
PyArrayObject * const object_;
|
|
};
|
|
|
|
|
|
template <typename MatrixType>
|
|
class Map: public MapBase<MatrixType> {
|
|
public:
|
|
typedef MapBase<MatrixType> Base;
|
|
typedef typename MatrixType::Scalar Scalar;
|
|
|
|
enum {
|
|
RowsAtCompileTime = Base::Base::RowsAtCompileTime,
|
|
ColsAtCompileTime = Base::Base::ColsAtCompileTime
|
|
};
|
|
|
|
Map()
|
|
: Base(NULL,
|
|
(RowsAtCompileTime == Eigen::Dynamic) ? 0 : RowsAtCompileTime,
|
|
(ColsAtCompileTime == Eigen::Dynamic) ? 0 : ColsAtCompileTime),
|
|
object_(NULL) {
|
|
}
|
|
|
|
Map(Scalar *data, long rows, long cols)
|
|
: Base(data, rows, cols),
|
|
object_(NULL) {}
|
|
|
|
Map(PyArrayObject *object)
|
|
: Base((PyObject*)object == Py_None? NULL: (Scalar *)object->data,
|
|
// ROW: If array is in row-major order, transpose (see README)
|
|
(PyObject*)object == Py_None? 0 :
|
|
(!PyArray_IS_F_CONTIGUOUS(object)
|
|
? ((object->nd == 1)
|
|
? 1 // ROW: If 1D row-major numpy array, set to 1 (row vector)
|
|
: object->dimensions[1])
|
|
: object->dimensions[0]),
|
|
// COLUMN: If array is in row-major order: transpose (see README)
|
|
(PyObject*)object == Py_None? 0 :
|
|
(!PyArray_IS_F_CONTIGUOUS(object)
|
|
? object->dimensions[0]
|
|
: ((object->nd == 1)
|
|
? 1 // COLUMN: If 1D col-major numpy array, set to length (column vector)
|
|
: object->dimensions[1]))),
|
|
object_(object) {
|
|
|
|
if (((PyObject*)object != Py_None) && !PyArray_ISONESEGMENT(object))
|
|
throw std::invalid_argument("Numpy array must be a in one contiguous segment to be able to be transferred to a Eigen Map.");
|
|
Py_XINCREF(object_);
|
|
}
|
|
|
|
Map &operator=(const Map &other) {
|
|
if (other.object_) {
|
|
new (this) Map(other.object_);
|
|
} else {
|
|
// Replace the memory that we point to (not a memory allocation)
|
|
new (this) Map(const_cast<Scalar*>(other.data()),
|
|
other.rows(),
|
|
other.cols());
|
|
}
|
|
|
|
return *this;
|
|
}
|
|
|
|
Map &operator=(const MatrixType &other) {
|
|
MapBase<MatrixType>::operator=(other);
|
|
return *this;
|
|
}
|
|
|
|
operator Base() const {
|
|
return static_cast<Base>(*this);
|
|
}
|
|
|
|
operator Base&() const {
|
|
return static_cast<Base&>(*this);
|
|
}
|
|
|
|
operator MatrixType() const {
|
|
return MatrixType(static_cast<Base>(*this));
|
|
}
|
|
|
|
virtual ~Map() {
|
|
Py_XDECREF(object_);
|
|
}
|
|
|
|
private:
|
|
PyArrayObject * const object_;
|
|
};
|
|
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|