gtsam/matlab/examples/SFMExample.m

85 lines
2.8 KiB
Matlab

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% GTSAM Copyright 2010, Georgia Tech Research Corporation,
% Atlanta, Georgia 30332-0415
% All Rights Reserved
% Authors: Frank Dellaert, et al. (see THANKS for the full author list)
%
% See LICENSE for the license information
%
% @brief A structure from motion example
% @author Duy-Nguyen Ta
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Assumptions
% - Landmarks as 8 vertices of a cube: (10,10,10) (-10,10,10) etc...
% - Cameras are on a circle around the cube, pointing at the world origin
% - Each camera sees all landmarks.
% - Visual measurements as 2D points are given, corrupted by Gaussian noise.
% Data Options
options.triangle = false;
options.nrCameras = 10;
options.showImages = false;
%% Generate data
[data,truth] = VisualISAMGenerateData(options);
measurementNoiseSigma = 1.0;
pointNoiseSigma = 0.1;
poseNoiseSigmas = [0.001 0.001 0.001 0.1 0.1 0.1]';
%% Create the graph (defined in visualSLAM.h, derived from NonlinearFactorGraph)
graph = visualSLAMGraph;
%% Add factors for all measurements
measurementNoise = gtsamSharedNoiseModel_Sigma(2,measurementNoiseSigma);
for i=1:length(data.Z)
for k=1:length(data.Z{i})
j = data.J{i}{k};
graph.addMeasurement(data.Z{i}{k}, measurementNoise, symbol('x',i), symbol('l',j), data.K);
end
end
%% Add Gaussian priors for a pose and a landmark to constrain the system
posePriorNoise = gtsamSharedNoiseModel_Sigmas(poseNoiseSigmas);
graph.addPosePrior(symbol('x',1), truth.cameras{1}.pose, posePriorNoise);
pointPriorNoise = gtsamSharedNoiseModel_Sigma(3,pointNoiseSigma);
graph.addPointPrior(symbol('l',1), truth.points{1}, pointPriorNoise);
%% Print the graph
graph.print(sprintf('\nFactor graph:\n'));
%% Initialize cameras and points to ground truth in this example
initialEstimate = visualSLAMValues;
for i=1:size(truth.cameras,2)
initialEstimate.insertPose(symbol('x',i), truth.cameras{i}.pose);
end
for j=1:size(truth.points,2)
initialEstimate.insertPoint(symbol('l',j), truth.points{j});
end
initialEstimate.print(sprintf('\nInitial estimate:\n '));
%% Optimize using Levenberg-Marquardt optimization with an ordering from colamd
result = graph.optimize(initialEstimate);
result.print(sprintf('\nFinal result:\n '));
%% Plot results with covariance ellipses
marginals = graph.marginals(result);
cla
hold on;
for j=1:result.nrPoints
P = marginals.marginalCovariance(symbol('l',j));
point_j = result.point(symbol('l',j));
plot3(point_j.x, point_j.y, point_j.z,'marker','o');
covarianceEllipse3D([point_j.x;point_j.y;point_j.z],P);
end
for i=1:result.nrPoses
P = marginals.marginalCovariance(symbol('x',i));
pose_i = result.pose(symbol('x',i));
plotPose3(pose_i,P,10);
end
axis([-40 40 -40 40 -10 20]);axis equal
view(3)
colormap('hot')