gtsam/examples/SFMExample_SmartFactor.cpp

169 lines
6.9 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file SFMExample_SmartFactor.cpp
* @brief A structure-from-motion problem on a simulated dataset, using smart projection factor
* @author Duy-Nguyen Ta
* @author Jing Dong
*/
/**
* A structure-from-motion example with landmarks
* - The landmarks form a 10 meter cube
* - The robot rotates around the landmarks, always facing towards the cube
*/
// For loading the data
#include "SFMdata.h"
// Camera observations of landmarks (i.e. pixel coordinates) will be stored as Point2 (x, y).
#include <gtsam/geometry/Point2.h>
// Each variable in the system (poses and landmarks) must be identified with a unique key.
// We can either use simple integer keys (1, 2, 3, ...) or symbols (X1, X2, L1).
// Here we will use Symbols
#include <gtsam/inference/Symbol.h>
// In GTSAM, measurement functions are represented as 'factors'.
// The factor we used here is SmartProjectionPoseFactor. Every smart factor represent a single landmark,
// The SmartProjectionPoseFactor only optimize the pose of camera, not the calibration,
// The calibration should be known.
#include <gtsam/slam/SmartProjectionPoseFactor.h>
// Also, we will initialize the robot at some location using a Prior factor.
#include <gtsam/slam/PriorFactor.h>
// When the factors are created, we will add them to a Factor Graph. As the factors we are using
// are nonlinear factors, we will need a Nonlinear Factor Graph.
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
// Finally, once all of the factors have been added to our factor graph, we will want to
// solve/optimize to graph to find the best (Maximum A Posteriori) set of variable values.
// GTSAM includes several nonlinear optimizers to perform this step. Here we will use a
// trust-region method known as Powell's Degleg
#include <gtsam/nonlinear/DoglegOptimizer.h>
// The nonlinear solvers within GTSAM are iterative solvers, meaning they linearize the
// nonlinear functions around an initial linearization point, then solve the linear system
// to update the linearization point. This happens repeatedly until the solver converges
// to a consistent set of variable values. This requires us to specify an initial guess
// for each variable, held in a Values container.
#include <gtsam/nonlinear/Values.h>
#include <vector>
using namespace std;
using namespace gtsam;
// Make the typename short so it looks much cleaner
typedef gtsam::SmartProjectionPoseFactor<gtsam::Pose3, gtsam::Point3, gtsam::Cal3_S2>
SmartFactor;
/* ************************************************************************* */
int main(int argc, char* argv[]) {
// Define the camera calibration parameters
Cal3_S2::shared_ptr K(new Cal3_S2(50.0, 50.0, 0.0, 50.0, 50.0));
// Define the camera observation noise model
noiseModel::Isotropic::shared_ptr measurementNoise = noiseModel::Isotropic::Sigma(2, 1.0); // one pixel in u and v
// Create the set of ground-truth landmarks
vector<Point3> points = createPoints();
// Create the set of ground-truth poses
vector<Pose3> poses = createPoses();
// Create a factor graph
NonlinearFactorGraph graph;
// A vector saved all Smart factors (for get landmark position after optimization)
vector<SmartFactor::shared_ptr> smartfactors_ptr;
// Simulated measurements from each camera pose, adding them to the factor graph
for (size_t i = 0; i < points.size(); ++i) {
// every landmark represent a single landmark, we use shared pointer to init the factor, and then insert measurements.
SmartFactor::shared_ptr smartfactor(new SmartFactor());
for (size_t j = 0; j < poses.size(); ++j) {
// generate the 2D measurement
SimpleCamera camera(poses[j], *K);
Point2 measurement = camera.project(points[i]);
// call add() function to add measurment into a single factor, here we need to add:
// 1. the 2D measurement
// 2. the corresponding camera's key
// 3. camera noise model
// 4. camera calibration
smartfactor->add(measurement, Symbol('x', j), measurementNoise, K);
}
// save smartfactors to get landmark position
smartfactors_ptr.push_back(smartfactor);
// insert the smart factor in the graph
graph.push_back(smartfactor);
}
// Add a prior on pose x0. This indirectly specifies where the origin is.
noiseModel::Diagonal::shared_ptr poseNoise = noiseModel::Diagonal::Sigmas((Vector(6) << Vector3::Constant(0.3), Vector3::Constant(0.1))); // 30cm std on x,y,z 0.1 rad on roll,pitch,yaw
graph.push_back(PriorFactor<Pose3>(Symbol('x', 0), poses[0], poseNoise)); // add directly to graph
// Because the structure-from-motion problem has a scale ambiguity, the problem is still under-constrained
// Here we add a prior on the second pose x1, so this will fix the scale by indicating the distance between x0 and x1.
// Because these two are fixed, the rest poses will be alse fixed.
graph.push_back(PriorFactor<Pose3>(Symbol('x', 1), poses[1], poseNoise)); // add directly to graph
graph.print("Factor Graph:\n");
// Create the data structure to hold the initial estimate to the solution
// Intentionally initialize the variables off from the ground truth
Values initialEstimate;
for (size_t i = 0; i < poses.size(); ++i)
initialEstimate.insert(Symbol('x', i), poses[i].compose(Pose3(Rot3::rodriguez(-0.1, 0.2, 0.25), Point3(0.05, -0.10, 0.20))));
initialEstimate.print("Initial Estimates:\n");
// Optimize the graph and print results
Values result = DoglegOptimizer(graph, initialEstimate).optimize();
result.print("Final results:\n");
// Notice: Smart factor represent the 3D point as a factor, not a variable.
// The 3D position of the landmark is not explicitly calculated by the optimizer.
// If you do want to output the landmark's 3D position, you should use the internal function point()
// of the smart factor to get the 3D point.
Values landmark_result;
for (size_t i = 0; i < points.size(); ++i) {
// The output of point() is in boost::optional<gtsam::Point3>, since sometimes
// the triangulation opterations inside smart factor will encounter degeneracy.
// Check the manual of boost::optional for more details for the usages.
boost::optional<Point3> point;
// here we use the saved smart factors to call, pass in all optimized pose to calculate landmark positions
point = smartfactors_ptr.at(i)->point(result);
// ignore if boost::optional return NULL
if (point)
landmark_result.insert(Symbol('l', i), *point);
}
landmark_result.print("Landmark results:\n");
return 0;
}
/* ************************************************************************* */