gtsam/gtsam_unstable/nonlinear/tests/testBADFactor.cpp

146 lines
4.1 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file testBADFactor.cpp
* @date September 18, 2014
* @author Frank Dellaert
* @author Paul Furgale
* @brief unit tests for Block Automatic Differentiation
*/
#include <gtsam/slam/GeneralSFMFactor.h>
#include <gtsam/geometry/Pose3.h>
#include <gtsam/geometry/Cal3_S2.h>
#include <gtsam_unstable/nonlinear/BADFactor.h>
#include <gtsam/base/Testable.h>
#include <CppUnitLite/TestHarness.h>
using namespace std;
using namespace gtsam;
/* ************************************************************************* */
Point3 transformTo(const Pose3& x, const Point3& p,
boost::optional<Matrix&> Dpose, boost::optional<Matrix&> Dpoint) {
return x.transform_to(p, Dpose, Dpoint);
}
Point2 project(const Point3& p, boost::optional<Matrix&> Dpoint) {
return PinholeCamera<Cal3_S2>::project_to_camera(p, Dpoint);
}
template<class CAL>
Point2 uncalibrate(const CAL& K, const Point2& p, boost::optional<Matrix&> Dcal,
boost::optional<Matrix&> Dp) {
return K.uncalibrate(p, Dcal, Dp);
}
/* ************************************************************************* */
TEST(BAD, test) {
// Create some values
Values values;
values.insert(1, Pose3());
values.insert(2, Point3(0, 0, 1));
values.insert(3, Cal3_S2());
// Create old-style factor to create expected value and derivatives
Point2 measured(-17, 30);
SharedNoiseModel model = noiseModel::Unit::Create(2);
GeneralSFMFactor2<Cal3_S2> old(measured, model, 1, 2, 3);
double expected_error = old.error(values);
GaussianFactor::shared_ptr expected = old.linearize(values);
// Test Constant expression
Expression<int> c(0);
// Create leaves
Expression<Pose3> x(1);
Expression<Point3> p(2);
Expression<Cal3_S2> K(3);
// Create expression tree
Expression<Point3> p_cam(transformTo, x, p);
Expression<Point2> projection(project, p_cam);
Expression<Point2> uv_hat(uncalibrate<Cal3_S2>, K, projection);
// Create factor
BADFactor<Point2> f(measured, uv_hat);
// Check value
EXPECT_DOUBLES_EQUAL(expected_error, f.error(values), 1e-9);
// Check dimension
EXPECT_LONGS_EQUAL(0, f.dim());
// Check linearization
boost::shared_ptr<GaussianFactor> gf = f.linearize(values);
EXPECT( assert_equal(*expected, *gf, 1e-9));
}
/* ************************************************************************* */
TEST(BAD, compose) {
// Create expression
Expression<Rot3> R1(1), R2(2);
Expression<Rot3> R3 = R1 * R2;
// Create factor
BADFactor<Rot3> f(Rot3(), R3);
// Create some values
Values values;
values.insert(1, Rot3());
values.insert(2, Rot3());
// Check linearization
JacobianFactor expected(1, eye(3), 2, eye(3), zero(3));
boost::shared_ptr<GaussianFactor> gf = f.linearize(values);
boost::shared_ptr<JacobianFactor> jf = //
boost::dynamic_pointer_cast<JacobianFactor>(gf);
EXPECT( assert_equal(expected, *jf,1e-9));
}
/* ************************************************************************* */
// Test compose with arguments referring to the same rotation
TEST(BAD, compose2) {
// Create expression
Expression<Rot3> R1(1), R2(1);
Expression<Rot3> R3 = R1 * R2;
// Create factor
BADFactor<Rot3> f(Rot3(), R3);
// Create some values
Values values;
values.insert(1, Rot3());
// Check linearization
JacobianFactor expected(1, 2*eye(3), zero(3));
boost::shared_ptr<GaussianFactor> gf = f.linearize(values);
boost::shared_ptr<JacobianFactor> jf = //
boost::dynamic_pointer_cast<JacobianFactor>(gf);
EXPECT( assert_equal(expected, *jf,1e-9));
}
/* ************************************************************************* */
int main() {
TestResult tr;
return TestRegistry::runAllTests(tr);
}
/* ************************************************************************* */