gtsam/gtsam/nonlinear/ISAM2-impl.h

852 lines
32 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file ISAM2-impl.h
* @brief Incremental update functionality (ISAM2) for BayesTree, with fluid
* relinearization.
* @author Michael Kaess, Richard Roberts, Frank Dellaert
*/
#pragma once
#include <gtsam/nonlinear/ISAM2.h>
#include <gtsam/nonlinear/ISAM2Result.h>
#include <gtsam/base/debug.h>
#include <gtsam/inference/JunctionTree-inst.h> // We need the inst file because we'll make a special JT templated on ISAM2
#include <gtsam/inference/Symbol.h>
#include <gtsam/inference/VariableIndex.h>
#include <gtsam/linear/GaussianBayesTree.h>
#include <gtsam/linear/GaussianEliminationTree.h>
#include <boost/range/adaptors.hpp>
#include <boost/range/algorithm/copy.hpp>
namespace br {
using namespace boost::range;
using namespace boost::adaptors;
} // namespace br
#include <algorithm>
#include <limits>
#include <string>
#include <utility>
namespace gtsam {
/* ************************************************************************* */
// Special BayesTree class that uses ISAM2 cliques - this is the result of
// reeliminating ISAM2 subtrees.
class ISAM2BayesTree : public ISAM2::Base {
public:
typedef ISAM2::Base Base;
typedef ISAM2BayesTree This;
typedef boost::shared_ptr<This> shared_ptr;
ISAM2BayesTree() {}
};
/* ************************************************************************* */
// Special JunctionTree class that produces ISAM2 BayesTree cliques, used for
// reeliminating ISAM2 subtrees.
class ISAM2JunctionTree
: public JunctionTree<ISAM2BayesTree, GaussianFactorGraph> {
public:
typedef JunctionTree<ISAM2BayesTree, GaussianFactorGraph> Base;
typedef ISAM2JunctionTree This;
typedef boost::shared_ptr<This> shared_ptr;
explicit ISAM2JunctionTree(const GaussianEliminationTree& eliminationTree)
: Base(eliminationTree) {}
};
/* ************************************************************************* */
struct GTSAM_EXPORT DeltaImpl {
struct GTSAM_EXPORT PartialSolveResult {
ISAM2::sharedClique bayesTree;
};
struct GTSAM_EXPORT ReorderingMode {
size_t nFullSystemVars;
enum { /*AS_ADDED,*/ COLAMD } algorithm;
enum { NO_CONSTRAINT, CONSTRAIN_LAST } constrain;
boost::optional<FastMap<Key, int> > constrainedKeys;
};
/**
* Update the Newton's method step point, using wildfire
*/
static size_t UpdateGaussNewtonDelta(const ISAM2::Roots& roots,
const KeySet& replacedKeys,
double wildfireThreshold,
VectorValues* delta);
/**
* Update the RgProd (R*g) incrementally taking into account which variables
* have been recalculated in \c replacedKeys. Only used in Dogleg.
*/
static size_t UpdateRgProd(const ISAM2::Roots& roots,
const KeySet& replacedKeys,
const VectorValues& gradAtZero,
VectorValues* RgProd);
/**
* Compute the gradient-search point. Only used in Dogleg.
*/
static VectorValues ComputeGradientSearch(const VectorValues& gradAtZero,
const VectorValues& RgProd);
};
/* ************************************************************************* */
/**
* Implementation functions for update method
* All of the methods below have clear inputs and outputs, even if not
* functional: iSAM2 is inherintly imperative.
*/
struct GTSAM_EXPORT UpdateImpl {
const ISAM2Params& params_;
const ISAM2UpdateParams& updateParams_;
UpdateImpl(const ISAM2Params& params, const ISAM2UpdateParams& updateParams)
: params_(params), updateParams_(updateParams) {}
/// Perform the first part of the bookkeeping updates for adding new factors.
/// Adds them to the complete list of nonlinear factors, and populates the
/// list of new factor indices, both optionally finding and reusing empty
/// factor slots.
static void AddFactorsStep1(const NonlinearFactorGraph& newFactors,
bool useUnusedSlots,
NonlinearFactorGraph* nonlinearFactors,
FactorIndices* newFactorIndices) {
newFactorIndices->resize(newFactors.size());
if (useUnusedSlots) {
size_t globalFactorIndex = 0;
for (size_t newFactorIndex = 0; newFactorIndex < newFactors.size();
++newFactorIndex) {
// Loop to find the next available factor slot
do {
// If we need to add more factors than we have room for, resize
// nonlinearFactors, filling the new slots with NULL factors.
// Otherwise, check if the current factor in nonlinearFactors is
// already used, and if so, increase globalFactorIndex. If the
// current factor in nonlinearFactors is unused, break out of the loop
// and use the current slot.
if (globalFactorIndex >= nonlinearFactors->size())
nonlinearFactors->resize(nonlinearFactors->size() +
newFactors.size() - newFactorIndex);
else if ((*nonlinearFactors)[globalFactorIndex])
++globalFactorIndex;
else
break;
} while (true);
// Use the current slot, updating nonlinearFactors and newFactorSlots.
(*nonlinearFactors)[globalFactorIndex] = newFactors[newFactorIndex];
(*newFactorIndices)[newFactorIndex] = globalFactorIndex;
}
} else {
// We're not looking for unused slots, so just add the factors at the end.
for (size_t i = 0; i < newFactors.size(); ++i)
(*newFactorIndices)[i] = i + nonlinearFactors->size();
nonlinearFactors->push_back(newFactors);
}
}
// 1. Add any new factors \Factors:=\Factors\cup\Factors'.
void pushBackFactors(const NonlinearFactorGraph& newFactors,
NonlinearFactorGraph* nonlinearFactors,
GaussianFactorGraph* linearFactors,
VariableIndex* variableIndex,
ISAM2Result* result) const {
gttic(pushBackFactors);
const bool debug = ISDEBUG("ISAM2 update");
const bool verbose = ISDEBUG("ISAM2 update verbose");
// Add the new factor indices to the result struct
if (debug || verbose) newFactors.print("The new factors are: ");
AddFactorsStep1(newFactors, params_.findUnusedFactorSlots, nonlinearFactors,
&result->newFactorsIndices);
// Remove the removed factors
NonlinearFactorGraph removedFactors;
removedFactors.reserve(updateParams_.removeFactorIndices.size());
for (const auto index : updateParams_.removeFactorIndices) {
removedFactors.push_back(nonlinearFactors->at(index));
nonlinearFactors->remove(index);
if (params_.cacheLinearizedFactors) linearFactors->remove(index);
}
// Remove removed factors from the variable index so we do not attempt to
// relinearize them
variableIndex->remove(updateParams_.removeFactorIndices.begin(),
updateParams_.removeFactorIndices.end(),
removedFactors);
result->keysWithRemovedFactors = removedFactors.keys();
// Compute unused keys and indices
// Get keys from removed factors and new factors, and compute unused keys,
// i.e., keys that are empty now and do not appear in the new factors.
KeySet removedAndEmpty;
for (Key key : result->keysWithRemovedFactors) {
if (variableIndex->empty(key))
removedAndEmpty.insert(removedAndEmpty.end(), key);
}
KeySet newFactorSymbKeys = newFactors.keys();
std::set_difference(
removedAndEmpty.begin(), removedAndEmpty.end(),
newFactorSymbKeys.begin(), newFactorSymbKeys.end(),
std::inserter(result->unusedKeys, result->unusedKeys.end()));
// Get indices for unused keys
for (Key key : result->unusedKeys) {
result->unusedIndices.insert(result->unusedIndices.end(), key);
}
}
// 3. Mark linear update
void gatherInvolvedKeys(const NonlinearFactorGraph& newFactors,
const NonlinearFactorGraph& nonlinearFactors,
ISAM2Result* result) const {
gttic(gatherInvolvedKeys);
result->markedKeys = newFactors.keys(); // Get keys from new factors
// Also mark keys involved in removed factors
result->markedKeys.insert(result->keysWithRemovedFactors.begin(),
result->keysWithRemovedFactors.end());
// Also mark any provided extra re-eliminate keys
if (updateParams_.extraReelimKeys) {
for (Key key : *updateParams_.extraReelimKeys) {
result->markedKeys.insert(key);
}
}
// Also, keys that were not observed in existing factors, but whose affected
// keys have been extended now (e.g. smart factors)
if (updateParams_.newAffectedKeys) {
for (const auto& factorAddedKeys : *updateParams_.newAffectedKeys) {
const auto factorIdx = factorAddedKeys.first;
const auto& affectedKeys = nonlinearFactors.at(factorIdx)->keys();
result->markedKeys.insert(affectedKeys.begin(), affectedKeys.end());
}
}
// Observed keys for detailed results
if (params_.enableDetailedResults) {
for (Key key : result->markedKeys) {
result->detail->variableStatus[key].isObserved = true;
}
}
for (Key index : result->markedKeys) {
// Only add if not unused
if (result->unusedIndices.find(index) == result->unusedIndices.end())
// Make a copy of these, as we'll soon add to them
result->observedKeys.push_back(index);
}
}
static void CheckRelinearizationRecursiveMap(
const FastMap<char, Vector>& thresholds, const VectorValues& delta,
const ISAM2::sharedClique& clique, KeySet* relinKeys) {
// Check the current clique for relinearization
bool relinearize = false;
for (Key var : *clique->conditional()) {
// Find the threshold for this variable type
const Vector& threshold = thresholds.find(Symbol(var).chr())->second;
const Vector& deltaVar = delta[var];
// Verify the threshold vector matches the actual variable size
if (threshold.rows() != deltaVar.rows())
throw std::invalid_argument(
"Relinearization threshold vector dimensionality for '" +
std::string(1, Symbol(var).chr()) +
"' passed into iSAM2 parameters does not match actual variable "
"dimensionality.");
// Check for relinearization
if ((deltaVar.array().abs() > threshold.array()).any()) {
relinKeys->insert(var);
relinearize = true;
}
}
// If this node was relinearized, also check its children
if (relinearize) {
for (const ISAM2::sharedClique& child : clique->children) {
CheckRelinearizationRecursiveMap(thresholds, delta, child, relinKeys);
}
}
}
static void CheckRelinearizationRecursiveDouble(
double threshold, const VectorValues& delta,
const ISAM2::sharedClique& clique, KeySet* relinKeys) {
// Check the current clique for relinearization
bool relinearize = false;
for (Key var : *clique->conditional()) {
double maxDelta = delta[var].lpNorm<Eigen::Infinity>();
if (maxDelta >= threshold) {
relinKeys->insert(var);
relinearize = true;
}
}
// If this node was relinearized, also check its children
if (relinearize) {
for (const ISAM2::sharedClique& child : clique->children) {
CheckRelinearizationRecursiveDouble(threshold, delta, child, relinKeys);
}
}
}
/**
* Find the set of variables to be relinearized according to
* relinearizeThreshold. This check is performed recursively, starting at the
* top of the tree. Once a variable in the tree does not need to be
* relinearized, no further checks in that branch are performed. This is an
* approximation of the Full version, designed to save time at the expense of
* accuracy.
* @param delta The linear delta to check against the threshold
* @param keyFormatter Formatter for printing nonlinear keys during debugging
* @return The set of variable indices in delta whose magnitude is greater
* than or equal to relinearizeThreshold
*/
static KeySet CheckRelinearizationPartial(
const ISAM2::Roots& roots, const VectorValues& delta,
const ISAM2Params::RelinearizationThreshold& relinearizeThreshold) {
KeySet relinKeys;
for (const ISAM2::sharedClique& root : roots) {
if (relinearizeThreshold.type() == typeid(double))
CheckRelinearizationRecursiveDouble(
boost::get<double>(relinearizeThreshold), delta, root, &relinKeys);
else if (relinearizeThreshold.type() == typeid(FastMap<char, Vector>))
CheckRelinearizationRecursiveMap(
boost::get<FastMap<char, Vector> >(relinearizeThreshold), delta,
root, &relinKeys);
}
return relinKeys;
}
/**
* Find the set of variables to be relinearized according to
* relinearizeThreshold. Any variables in the VectorValues delta whose vector
* magnitude is greater than or equal to relinearizeThreshold are returned.
* @param delta The linear delta to check against the threshold
* @param keyFormatter Formatter for printing nonlinear keys during debugging
* @return The set of variable indices in delta whose magnitude is greater
* than or equal to relinearizeThreshold
*/
static KeySet CheckRelinearizationFull(
const VectorValues& delta,
const ISAM2Params::RelinearizationThreshold& relinearizeThreshold) {
KeySet relinKeys;
if (const double* threshold = boost::get<double>(&relinearizeThreshold)) {
for (const VectorValues::KeyValuePair& key_delta : delta) {
double maxDelta = key_delta.second.lpNorm<Eigen::Infinity>();
if (maxDelta >= *threshold) relinKeys.insert(key_delta.first);
}
} else if (const FastMap<char, Vector>* thresholds =
boost::get<FastMap<char, Vector> >(&relinearizeThreshold)) {
for (const VectorValues::KeyValuePair& key_delta : delta) {
const Vector& threshold =
thresholds->find(Symbol(key_delta.first).chr())->second;
if (threshold.rows() != key_delta.second.rows())
throw std::invalid_argument(
"Relinearization threshold vector dimensionality for '" +
std::string(1, Symbol(key_delta.first).chr()) +
"' passed into iSAM2 parameters does not match actual variable "
"dimensionality.");
if ((key_delta.second.array().abs() > threshold.array()).any())
relinKeys.insert(key_delta.first);
}
}
return relinKeys;
}
/**
* Apply expmap to the given values, but only for indices appearing in
* \c mask. Values are expmapped in-place.
* \param mask Mask on linear indices, only \c true entries are expmapped
*/
void expmapMasked(const VectorValues& delta, const KeySet& mask,
Values* theta) const {
assert(theta->size() == delta.size());
Values::iterator key_value;
VectorValues::const_iterator key_delta;
#ifdef GTSAM_USE_TBB
for (key_value = theta->begin(); key_value != theta->end(); ++key_value) {
key_delta = delta.find(key_value->key);
#else
for (key_value = theta->begin(), key_delta = delta.begin();
key_value != theta->end(); ++key_value, ++key_delta) {
assert(key_value->key == key_delta->first);
#endif
Key var = key_value->key;
assert(static_cast<size_t>(delta[var].size()) == key_value->value.dim());
assert(delta[var].allFinite());
if (mask.exists(var)) {
Value* retracted = key_value->value.retract_(delta[var]);
key_value->value = *retracted;
retracted->deallocate_();
}
}
}
KeySet relinearize(const ISAM2::Roots& roots, const VectorValues& delta,
const KeySet& fixedVariables, Values* theta,
ISAM2Result* result) const {
KeySet relinKeys;
gttic(gather_relinearize_keys);
// 4. Mark keys in \Delta above threshold \beta:
// J=\{\Delta_{j}\in\Delta|\Delta_{j}\geq\beta\}.
if (params_.enablePartialRelinearizationCheck)
relinKeys = CheckRelinearizationPartial(roots, delta,
params_.relinearizeThreshold);
else
relinKeys = CheckRelinearizationFull(delta, params_.relinearizeThreshold);
if (updateParams_.forceFullSolve)
relinKeys =
CheckRelinearizationFull(delta, 0.0); // This is used for debugging
// Remove from relinKeys any keys whose linearization points are fixed
for (Key key : fixedVariables) {
relinKeys.erase(key);
}
if (updateParams_.noRelinKeys) {
for (Key key : *updateParams_.noRelinKeys) {
relinKeys.erase(key);
}
}
// Above relin threshold keys for detailed results
if (params_.enableDetailedResults) {
for (Key key : relinKeys) {
result->detail->variableStatus[key].isAboveRelinThreshold = true;
result->detail->variableStatus[key].isRelinearized = true;
}
}
// Add the variables being relinearized to the marked keys
KeySet markedRelinMask;
for (const Key key : relinKeys) markedRelinMask.insert(key);
result->markedKeys.insert(relinKeys.begin(), relinKeys.end());
gttoc(gather_relinearize_keys);
gttic(fluid_find_all);
// 5. Mark all cliques that involve marked variables \Theta_{J} and all
// their ancestors.
if (!relinKeys.empty()) {
for (const auto& root : roots)
// add other cliques that have the marked ones in the separator
root->findAll(markedRelinMask, &result->markedKeys);
// Relin involved keys for detailed results
if (params_.enableDetailedResults) {
KeySet involvedRelinKeys;
for (const auto& root : roots)
root->findAll(markedRelinMask, &involvedRelinKeys);
for (Key key : involvedRelinKeys) {
if (!result->detail->variableStatus[key].isAboveRelinThreshold) {
result->detail->variableStatus[key].isRelinearizeInvolved = true;
result->detail->variableStatus[key].isRelinearized = true;
}
}
}
}
gttoc(fluid_find_all);
gttic(expmap);
// 6. Update linearization point for marked variables:
// \Theta_{J}:=\Theta_{J}+\Delta_{J}.
if (!relinKeys.empty()) expmapMasked(delta, markedRelinMask, theta);
gttoc(expmap);
result->variablesRelinearized = result->markedKeys.size();
return relinKeys;
}
// 7. Linearize new factors
void linearizeNewFactors(const NonlinearFactorGraph& newFactors,
const Values& theta, size_t numNonlinearFactors,
const FactorIndices& newFactorsIndices,
GaussianFactorGraph* linearFactors) const {
gttic(linearizeNewFactors);
auto linearized = newFactors.linearize(theta);
if (params_.findUnusedFactorSlots) {
linearFactors->resize(numNonlinearFactors);
for (size_t i = 0; i < newFactors.size(); ++i)
(*linearFactors)[newFactorsIndices[i]] = (*linearized)[i];
} else {
linearFactors->push_back(*linearized);
}
assert(linearFactors->size() == numNonlinearFactors);
}
void augmentVariableIndex(const NonlinearFactorGraph& newFactors,
const FactorIndices& newFactorsIndices,
VariableIndex* variableIndex) const {
gttic(augmentVariableIndex);
// Augment the variable index with the new factors
if (params_.findUnusedFactorSlots)
variableIndex->augment(newFactors, newFactorsIndices);
else
variableIndex->augment(newFactors);
// Augment it with existing factors which now affect to more variables:
if (updateParams_.newAffectedKeys) {
for (const auto& factorAddedKeys : *updateParams_.newAffectedKeys) {
const auto factorIdx = factorAddedKeys.first;
variableIndex->augmentExistingFactor(factorIdx, factorAddedKeys.second);
}
}
}
void logRecalculateKeys(const ISAM2Result& result) const {
const bool debug = ISDEBUG("ISAM2 recalculate");
if (debug) {
std::cout << "markedKeys: ";
for (const Key key : result.markedKeys) {
std::cout << key << " ";
}
std::cout << std::endl;
std::cout << "observedKeys: ";
for (const Key key : result.observedKeys) {
std::cout << key << " ";
}
std::cout << std::endl;
}
}
FactorIndexSet getAffectedFactors(const KeyList& keys,
const VariableIndex& variableIndex) const {
FactorIndexSet indices;
for (const Key key : keys) {
const FactorIndices& factors(variableIndex[key]);
indices.insert(factors.begin(), factors.end());
}
return indices;
}
// find intermediate (linearized) factors from cache that are passed into the
// affected area
GaussianFactorGraph getCachedBoundaryFactors(
const ISAM2::Cliques& orphans) const {
GaussianFactorGraph cachedBoundary;
for (const auto& orphan : orphans) {
// retrieve the cached factor and add to boundary
cachedBoundary.push_back(orphan->cachedFactor());
}
return cachedBoundary;
}
// retrieve all factors that ONLY contain the affected variables
// (note that the remaining stuff is summarized in the cached factors)
GaussianFactorGraph relinearizeAffectedFactors(
const FastList<Key>& affectedKeys, const KeySet& relinKeys,
const NonlinearFactorGraph& nonlinearFactors,
const VariableIndex& variableIndex, const Values& theta,
GaussianFactorGraph* linearFactors) const {
gttic(getAffectedFactors);
FactorIndexSet candidates = getAffectedFactors(affectedKeys, variableIndex);
gttoc(getAffectedFactors);
gttic(affectedKeysSet);
// for fast lookup below
KeySet affectedKeysSet;
affectedKeysSet.insert(affectedKeys.begin(), affectedKeys.end());
gttoc(affectedKeysSet);
gttic(check_candidates_and_linearize);
GaussianFactorGraph linearized;
for (const FactorIndex idx : candidates) {
bool inside = true;
bool useCachedLinear = params_.cacheLinearizedFactors;
for (Key key : nonlinearFactors[idx]->keys()) {
if (affectedKeysSet.find(key) == affectedKeysSet.end()) {
inside = false;
break;
}
if (useCachedLinear && relinKeys.find(key) != relinKeys.end())
useCachedLinear = false;
}
if (inside) {
if (useCachedLinear) {
#ifdef GTSAM_EXTRA_CONSISTENCY_CHECKS
assert((*linearFactors)[idx]);
assert((*linearFactors)[idx]->keys() ==
nonlinearFactors[idx]->keys());
#endif
linearized.push_back((*linearFactors)[idx]);
} else {
auto linearFactor = nonlinearFactors[idx]->linearize(theta);
linearized.push_back(linearFactor);
if (params_.cacheLinearizedFactors) {
#ifdef GTSAM_EXTRA_CONSISTENCY_CHECKS
assert((*linearFactors)[idx]->keys() == linearFactor->keys());
#endif
(*linearFactors)[idx] = linearFactor;
}
}
}
}
gttoc(check_candidates_and_linearize);
return linearized;
}
KeySet recalculate(const Values& theta, const VariableIndex& variableIndex,
const NonlinearFactorGraph& nonlinearFactors,
const GaussianBayesNet& affectedBayesNet,
const ISAM2::Cliques& orphans, const KeySet& relinKeys,
GaussianFactorGraph* linearFactors, ISAM2::Roots* roots,
ISAM2::Nodes* nodes, ISAM2Result* result) const {
gttic(recalculate);
logRecalculateKeys(*result);
// FactorGraph<GaussianFactor> factors(affectedBayesNet);
// bug was here: we cannot reuse the original factors, because then the
// cached factors get messed up [all the necessary data is actually
// contained in the affectedBayesNet, including what was passed in from the
// boundaries,
// so this would be correct; however, in the process we also generate new
// cached_ entries that will be wrong (ie. they don't contain what would be
// passed up at a certain point if batch elimination was done, but that's
// what we need); we could choose not to update cached_ from here, but then
// the new information (and potentially different variable ordering) is not
// reflected in the cached_ values which again will be wrong]
// so instead we have to retrieve the original linearized factors AND add
// the cached factors from the boundary
// BEGIN OF COPIED CODE
// ordering provides all keys in conditionals, there cannot be others
// because path to root included
gttic(affectedKeys);
FastList<Key> affectedKeys;
for (const auto& conditional : affectedBayesNet)
affectedKeys.insert(affectedKeys.end(), conditional->beginFrontals(),
conditional->endFrontals());
gttoc(affectedKeys);
KeySet affectedKeysSet; // Will return this result
static const double kBatchThreshold = 0.65;
if (affectedKeys.size() >= theta.size() * kBatchThreshold) {
// Do a batch step - reorder and relinearize all variables
gttic(batch);
gttic(add_keys);
br::copy(variableIndex | br::map_keys,
std::inserter(affectedKeysSet, affectedKeysSet.end()));
// Removed unused keys:
VariableIndex affectedFactorsVarIndex = variableIndex;
affectedFactorsVarIndex.removeUnusedVariables(
result->unusedIndices.begin(), result->unusedIndices.end());
for (const Key key : result->unusedIndices) {
affectedKeysSet.erase(key);
}
gttoc(add_keys);
gttic(ordering);
Ordering order;
if (updateParams_.constrainedKeys) {
order = Ordering::ColamdConstrained(affectedFactorsVarIndex,
*updateParams_.constrainedKeys);
} else {
if (theta.size() > result->observedKeys.size()) {
// Only if some variables are unconstrained
FastMap<Key, int> constraintGroups;
for (Key var : result->observedKeys) constraintGroups[var] = 1;
order = Ordering::ColamdConstrained(affectedFactorsVarIndex,
constraintGroups);
} else {
order = Ordering::Colamd(affectedFactorsVarIndex);
}
}
gttoc(ordering);
gttic(linearize);
GaussianFactorGraph linearized = *nonlinearFactors.linearize(theta);
if (params_.cacheLinearizedFactors) *linearFactors = linearized;
gttoc(linearize);
gttic(eliminate);
ISAM2BayesTree::shared_ptr bayesTree =
ISAM2JunctionTree(GaussianEliminationTree(
linearized, affectedFactorsVarIndex, order))
.eliminate(params_.getEliminationFunction())
.first;
gttoc(eliminate);
gttic(insert);
roots->clear();
roots->insert(roots->end(), bayesTree->roots().begin(),
bayesTree->roots().end());
nodes->clear();
nodes->insert(bayesTree->nodes().begin(), bayesTree->nodes().end());
gttoc(insert);
result->variablesReeliminated = affectedKeysSet.size();
result->factorsRecalculated = nonlinearFactors.size();
// Reeliminated keys for detailed results
if (params_.enableDetailedResults) {
for (Key key : theta.keys()) {
result->detail->variableStatus[key].isReeliminated = true;
}
}
gttoc(batch);
} else {
gttic(incremental);
const bool debug = ISDEBUG("ISAM2 recalculate");
// 2. Add the new factors \Factors' into the resulting factor graph
FastList<Key> affectedAndNewKeys;
affectedAndNewKeys.insert(affectedAndNewKeys.end(), affectedKeys.begin(),
affectedKeys.end());
affectedAndNewKeys.insert(affectedAndNewKeys.end(),
result->observedKeys.begin(),
result->observedKeys.end());
gttic(relinearizeAffected);
GaussianFactorGraph factors = relinearizeAffectedFactors(
affectedAndNewKeys, relinKeys, nonlinearFactors, variableIndex, theta,
linearFactors);
gttoc(relinearizeAffected);
if (debug) {
factors.print("Relinearized factors: ");
std::cout << "Affected keys: ";
for (const Key key : affectedKeys) {
std::cout << key << " ";
}
std::cout << std::endl;
}
// Reeliminated keys for detailed results
if (params_.enableDetailedResults) {
for (Key key : affectedAndNewKeys) {
result->detail->variableStatus[key].isReeliminated = true;
}
}
result->variablesReeliminated = affectedAndNewKeys.size();
result->factorsRecalculated = factors.size();
gttic(cached);
// add the cached intermediate results from the boundary of the orphans
// ...
GaussianFactorGraph cachedBoundary = getCachedBoundaryFactors(orphans);
if (debug) cachedBoundary.print("Boundary factors: ");
factors.push_back(cachedBoundary);
gttoc(cached);
gttic(orphans);
// Add the orphaned subtrees
for (const auto& orphan : orphans)
factors +=
boost::make_shared<BayesTreeOrphanWrapper<ISAM2::Clique> >(orphan);
gttoc(orphans);
// END OF COPIED CODE
// 3. Re-order and eliminate the factor graph into a Bayes net (Algorithm
// [alg:eliminate]), and re-assemble into a new Bayes tree (Algorithm
// [alg:BayesTree])
gttic(reorder_and_eliminate);
gttic(list_to_set);
// create a partial reordering for the new and contaminated factors
// result->markedKeys are passed in: those variables will be forced to the
// end in the ordering
affectedKeysSet.insert(result->markedKeys.begin(),
result->markedKeys.end());
affectedKeysSet.insert(affectedKeys.begin(), affectedKeys.end());
gttoc(list_to_set);
VariableIndex affectedFactorsVarIndex(factors);
gttic(ordering_constraints);
// Create ordering constraints
FastMap<Key, int> constraintGroups;
if (updateParams_.constrainedKeys) {
constraintGroups = *updateParams_.constrainedKeys;
} else {
constraintGroups = FastMap<Key, int>();
const int group =
result->observedKeys.size() < affectedFactorsVarIndex.size() ? 1
: 0;
for (Key var : result->observedKeys)
constraintGroups.insert(std::make_pair(var, group));
}
// Remove unaffected keys from the constraints
for (FastMap<Key, int>::iterator iter = constraintGroups.begin();
iter != constraintGroups.end();
/*Incremented in loop ++iter*/) {
if (result->unusedIndices.exists(iter->first) ||
!affectedKeysSet.exists(iter->first))
constraintGroups.erase(iter++);
else
++iter;
}
gttoc(ordering_constraints);
// Generate ordering
gttic(Ordering);
Ordering ordering = Ordering::ColamdConstrained(affectedFactorsVarIndex,
constraintGroups);
gttoc(Ordering);
ISAM2BayesTree::shared_ptr bayesTree =
ISAM2JunctionTree(GaussianEliminationTree(
factors, affectedFactorsVarIndex, ordering))
.eliminate(params_.getEliminationFunction())
.first;
gttoc(reorder_and_eliminate);
gttic(reassemble);
roots->insert(roots->end(), bayesTree->roots().begin(),
bayesTree->roots().end());
nodes->insert(bayesTree->nodes().begin(), bayesTree->nodes().end());
gttoc(reassemble);
// 4. The orphans have already been inserted during elimination
gttoc(incremental);
}
// Root clique variables for detailed results
if (params_.enableDetailedResults) {
for (const auto& root : *roots)
for (Key var : *root->conditional())
result->detail->variableStatus[var].inRootClique = true;
}
return affectedKeysSet;
}
};
/* ************************************************************************* */
} // namespace gtsam