gtsam/tests/testGaussianJunctionTreeB.cpp

251 lines
9.2 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file testGaussianJunctionTreeB.cpp
* @date Jul 8, 2010
* @author nikai
*/
#include <tests/smallExample.h>
#include <gtsam/sam/BearingRangeFactor.h>
#include <gtsam/slam/BetweenFactor.h>
#include <gtsam/nonlinear/PriorFactor.h>
#include <gtsam/geometry/Pose2.h>
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
#include <gtsam/nonlinear/Values.h>
#include <gtsam/linear/GaussianBayesNet.h>
#include <gtsam/linear/GaussianConditional.h>
#include <gtsam/linear/GaussianFactor.h>
#include <gtsam/linear/GaussianFactorGraph.h>
#include <gtsam/linear/GaussianEliminationTree.h>
#include <gtsam/linear/GaussianJunctionTree.h>
#include <gtsam/linear/HessianFactor.h>
#include <gtsam/linear/JacobianFactor.h>
#include <gtsam/linear/NoiseModel.h>
#include <gtsam/linear/VectorValues.h>
#include <gtsam/symbolic/SymbolicEliminationTree.h>
#include <gtsam/inference/BayesTree.h>
#include <gtsam/inference/ClusterTree.h>
#include <gtsam/inference/Ordering.h>
#include <gtsam/inference/Symbol.h>
#include <gtsam/base/Matrix.h>
#include <gtsam/base/Testable.h>
#include <CppUnitLite/TestHarness.h>
#include <cmath>
#include <list>
#include <utility>
#include <vector>
#include <iostream>
using namespace std;
using namespace gtsam;
using namespace example;
using symbol_shorthand::X;
using symbol_shorthand::L;
/* ************************************************************************* *
Bayes tree for smoother with "nested dissection" ordering:
C1 x5 x6 x4
C2 x3 x2 : x4
C3 x1 : x2
C4 x7 : x6
*/
TEST( GaussianJunctionTreeB, constructor2 ) {
// create a graph
const auto [nlfg, values] = createNonlinearSmoother(7);
SymbolicFactorGraph::shared_ptr symbolic = nlfg.symbolic();
// linearize
GaussianFactorGraph::shared_ptr fg = nlfg.linearize(values);
const Ordering ordering {X(1), X(3), X(5), X(7), X(2), X(6), X(4)};
// create an ordering
GaussianEliminationTree etree(*fg, ordering);
SymbolicEliminationTree stree(*symbolic, ordering);
GaussianJunctionTree actual(etree);
const Ordering o324{X(3), X(2), X(4)}, o56{X(5), X(6)}, o7{X(7)}, o1{X(1)};
GaussianJunctionTree::sharedNode x324 = actual.roots().front();
LONGS_EQUAL(2, x324->children.size());
GaussianJunctionTree::sharedNode x1 = x324->children.front();
GaussianJunctionTree::sharedNode x56 = x324->children.back();
if (x1->children.size() > 0)
x1.swap(x56); // makes it work with different tie-breakers
LONGS_EQUAL(0, x1->children.size());
LONGS_EQUAL(1, x56->children.size());
GaussianJunctionTree::sharedNode x7 = x56->children[0];
LONGS_EQUAL(0, x7->children.size());
EXPECT(assert_equal(o324, x324->orderedFrontalKeys));
EXPECT_LONGS_EQUAL(5, x324->factors.size());
EXPECT_LONGS_EQUAL(9, x324->problemSize_);
EXPECT(assert_equal(o56, x56->orderedFrontalKeys));
EXPECT_LONGS_EQUAL(4, x56->factors.size());
EXPECT_LONGS_EQUAL(9, x56->problemSize_);
EXPECT(assert_equal(o7, x7->orderedFrontalKeys));
EXPECT_LONGS_EQUAL(2, x7->factors.size());
EXPECT_LONGS_EQUAL(4, x7->problemSize_);
EXPECT(assert_equal(o1, x1->orderedFrontalKeys));
EXPECT_LONGS_EQUAL(2, x1->factors.size());
EXPECT_LONGS_EQUAL(4, x1->problemSize_);
}
///* ************************************************************************* */
TEST(GaussianJunctionTreeB, OptimizeMultiFrontal) {
// create a graph
const auto fg = createSmoother(7);
// optimize the graph
const VectorValues actual = fg.optimize(&EliminateQR);
// verify
VectorValues expected;
const Vector v = Vector2(0., 0.);
for (int i = 1; i <= 7; i++) expected.emplace(X(i), v);
EXPECT(assert_equal(expected, actual));
}
/* ************************************************************************* */
TEST(GaussianJunctionTreeB, optimizeMultiFrontal2) {
// create a graph
const auto nlfg = createNonlinearFactorGraph();
const auto noisy = createNoisyValues();
const auto fg = *nlfg.linearize(noisy);
// optimize the graph
VectorValues actual = fg.optimize(&EliminateQR);
// verify
VectorValues expected = createCorrectDelta(); // expected solution
EXPECT(assert_equal(expected, actual));
}
///* ************************************************************************* */
//TEST(GaussianJunctionTreeB, slamlike) {
// Values init;
// NonlinearFactorGraph newfactors;
// NonlinearFactorGraph fullgraph;
// SharedDiagonal odoNoise = noiseModel::Diagonal::Sigmas((Vector(3) << 0.1, 0.1, M_PI/100.0));
// SharedDiagonal brNoise = noiseModel::Diagonal::Sigmas((Vector(2) << M_PI/100.0, 0.1));
//
// size_t i = 0;
//
// newfactors = NonlinearFactorGraph();
// newfactors.add(PriorFactor<Pose2>(X(0), Pose2(0.0, 0.0, 0.0), odoNoise));
// init.insert(X(0), Pose2(0.01, 0.01, 0.01));
// fullgraph.push_back(newfactors);
//
// for( ; i<5; ++i) {
// newfactors = NonlinearFactorGraph();
// newfactors.add(BetweenFactor<Pose2>(X(i), X(i+1), Pose2(1.0, 0.0, 0.0), odoNoise));
// init.insert(X(i+1), Pose2(double(i+1)+0.1, -0.1, 0.01));
// fullgraph.push_back(newfactors);
// }
//
// newfactors = NonlinearFactorGraph();
// newfactors.add(BetweenFactor<Pose2>(X(i), X(i+1), Pose2(1.0, 0.0, 0.0), odoNoise));
// newfactors.add(BearingRangeFactor<Pose2,Point2>(X(i), L(0), Rot2::fromAngle(M_PI/4.0), 5.0, brNoise));
// newfactors.add(BearingRangeFactor<Pose2,Point2>(X(i), L(1), Rot2::fromAngle(-M_PI/4.0), 5.0, brNoise));
// init.insert(X(i+1), Pose2(1.01, 0.01, 0.01));
// init.insert(L(0), Point2(5.0/sqrt(2.0), 5.0/sqrt(2.0)));
// init.insert(L(1), Point2(5.0/sqrt(2.0), -5.0/sqrt(2.0)));
// fullgraph.push_back(newfactors);
// ++ i;
//
// for( ; i<5; ++i) {
// newfactors = NonlinearFactorGraph();
// newfactors.add(BetweenFactor<Pose2>(X(i), X(i+1), Pose2(1.0, 0.0, 0.0), odoNoise));
// init.insert(X(i+1), Pose2(double(i+1)+0.1, -0.1, 0.01));
// fullgraph.push_back(newfactors);
// }
//
// newfactors = NonlinearFactorGraph();
// newfactors.add(BetweenFactor<Pose2>(X(i), X(i+1), Pose2(1.0, 0.0, 0.0), odoNoise));
// newfactors.add(BearingRangeFactor<Pose2,Point2>(X(i), L(0), Rot2::fromAngle(M_PI/4.0 + M_PI/16.0), 4.5, brNoise));
// newfactors.add(BearingRangeFactor<Pose2,Point2>(X(i), L(1), Rot2::fromAngle(-M_PI/4.0 + M_PI/16.0), 4.5, brNoise));
// init.insert(X(i+1), Pose2(6.9, 0.1, 0.01));
// fullgraph.push_back(newfactors);
// ++ i;
//
// // Compare solutions
// Ordering ordering = *fullgraph.orderingCOLAMD(init);
// GaussianFactorGraph linearized = *fullgraph.linearize(init, ordering);
//
// GaussianJunctionTree gjt(linearized);
// VectorValues deltaactual = gjt.optimize(&EliminateQR);
// Values actual = init.retract(deltaactual, ordering);
//
// GaussianBayesNet gbn = *GaussianSequentialSolver(linearized).eliminate();
// VectorValues delta = optimize(gbn);
// Values expected = init.retract(delta, ordering);
//
// EXPECT(assert_equal(expected, actual));
//}
//
///* ************************************************************************* */
//TEST(GaussianJunctionTreeB, simpleMarginal) {
//
// typedef BayesTree<GaussianConditional> GaussianBayesTree;
//
// // Create a simple graph
// NonlinearFactorGraph fg;
// fg.add(PriorFactor<Pose2>(X(0), Pose2(), noiseModel::Isotropic::Sigma(3, 10.0)));
// fg.add(BetweenFactor<Pose2>(X(0), X(1), Pose2(1.0, 0.0, 0.0), noiseModel::Diagonal::Sigmas(Vector3(10.0, 1.0, 1.0))));
//
// Values init;
// init.insert(X(0), Pose2());
// init.insert(X(1), Pose2(1.0, 0.0, 0.0));
//
// const Ordering ordering{X(1), X(0)};
//
// GaussianFactorGraph gfg = *fg.linearize(init, ordering);
//
// // Compute marginals with both sequential and multifrontal
// Matrix expected = GaussianSequentialSolver(gfg).marginalCovariance(1);
//
// Matrix actual1 = GaussianMultifrontalSolver(gfg).marginalCovariance(1);
//
// // Compute marginal directly from marginal factor
// GaussianFactor::shared_ptr marginalFactor = GaussianMultifrontalSolver(gfg).marginalFactor(1);
// JacobianFactor::shared_ptr marginalJacobian = std::dynamic_pointer_cast<JacobianFactor>(marginalFactor);
// Matrix actual2 = inverse(marginalJacobian->getA(marginalJacobian->begin()).transpose() * marginalJacobian->getA(marginalJacobian->begin()));
//
// // Compute marginal directly from BayesTree
// GaussianBayesTree gbt;
// gbt.insert(GaussianJunctionTree(gfg).eliminate(EliminateCholesky));
// marginalFactor = gbt.marginalFactor(1, EliminateCholesky);
// marginalJacobian = std::dynamic_pointer_cast<JacobianFactor>(marginalFactor);
// Matrix actual3 = inverse(marginalJacobian->getA(marginalJacobian->begin()).transpose() * marginalJacobian->getA(marginalJacobian->begin()));
//
// EXPECT(assert_equal(expected, actual1));
// EXPECT(assert_equal(expected, actual2));
// EXPECT(assert_equal(expected, actual3));
//}
/* ************************************************************************* */
int main() {
TestResult tr;
return TestRegistry::runAllTests(tr);
}
/* ************************************************************************* */