gtsam/cpp/testPose3.cpp

303 lines
9.2 KiB
C++

/**
* @file testPose3.cpp
* @brief Unit tests for Pose3 class
*/
#include <CppUnitLite/TestHarness.h>
#include "numericalDerivative.h"
#include "Pose3.h"
using namespace gtsam;
Rot3 R = rodriguez(0.3,0,0);
Point3 t(3.5,-8.2,4.2);
Pose3 T(R,t);
Point3 P(0.2,0.7,-2);
Rot3 r1 = rodriguez(-90, 0, 0);
Pose3 pose1(r1, Point3(1, 2, 3));
double error = 1e-8;
#define PI 3.14159265358979323846
/* ************************************************************************* */
TEST( Pose3, equals)
{
Pose3 pose2 = pose1;
CHECK(pose1.equals(pose2));
Pose3 origin;
CHECK(!pose1.equals(origin));
}
/* ************************************************************************* */
TEST( Pose3, expmap_a)
{
Pose3 id;
Vector v(6);
fill(v.begin(), v.end(), 0);
v(0) = 0.3;
CHECK(assert_equal(expmap(id,v), Pose3(R, Point3())));
v(3)=0.2;v(4)=0.7;v(5)=-2;
CHECK(assert_equal(expmap(id,v), Pose3(R, P)));
}
TEST(Pose3, expmap_b)
{
Pose3 p1(Rot3(), Point3(100, 0, 0));
Pose3 p2 = expmap(p1, Vector_(6,
0.0, 0.0, 0.1, 0.0, 0.0, 0.0));
Pose3 expected(rodriguez(0.0, 0.0, 0.1), Point3(100.0, 0.0, 0.0));
CHECK(assert_equal(expected, p2));
}
/* ************************************************************************* */
TEST( Pose3, compose )
{
Matrix actual = (T*T).matrix();
Matrix expected = T.matrix()*T.matrix();
CHECK(assert_equal(actual,expected,error));
Matrix numericalH1 = numericalDerivative21<Pose3,Pose3,Pose3>(compose, T, T, 1e-5);
Matrix actualH1 = Dcompose1(T, T);
CHECK(assert_equal(numericalH1,actualH1));
Matrix actualH2 = Dcompose2(T, T);
Matrix numericalH2 = numericalDerivative22<Pose3,Pose3,Pose3>(compose, T, T, 1e-5);
CHECK(assert_equal(numericalH2,actualH2));}
/* ************************************************************************* */
TEST( Pose3, inverse)
{
Matrix actual = inverse(T).matrix();
Matrix expected = inverse(T.matrix());
CHECK(assert_equal(actual,expected,error));
Matrix numericalH = numericalDerivative11<Pose3,Pose3>(inverse, T, 1e-5);
Matrix actualH = Dinverse(T);
CHECK(assert_equal(numericalH,actualH));
}
/* ************************************************************************* */
TEST( Pose3, compose_inverse)
{
Matrix actual = (T*inverse(T)).matrix();
Matrix expected = eye(4,4);
CHECK(assert_equal(actual,expected,error));
}
/* ************************************************************************* */
TEST( Pose3, Dtransform_from1_a)
{
Matrix computed = Dtransform_from1(T, P);
Matrix numerical = numericalDerivative21(transform_from,T,P);
CHECK(assert_equal(numerical,computed,error));
}
TEST( Pose3, Dtransform_from1_b)
{
Pose3 origin;
Matrix computed = Dtransform_from1(origin, P);
Matrix numerical = numericalDerivative21(transform_from,origin,P);
CHECK(assert_equal(numerical,computed,error));
}
TEST( Pose3, Dtransform_from1_c)
{
Point3 origin;
Pose3 T0(R,origin);
Matrix computed = Dtransform_from1(T0, P);
Matrix numerical = numericalDerivative21(transform_from,T0,P);
CHECK(assert_equal(numerical,computed,error));
}
TEST( Pose3, Dtransform_from1_d)
{
Rot3 I;
Point3 t0(100,0,0);
Pose3 T0(I,t0);
Matrix computed = Dtransform_from1(T0, P);
//print(computed, "Dtransform_from1_d computed:");
Matrix numerical = numericalDerivative21(transform_from,T0,P);
//print(numerical, "Dtransform_from1_d numerical:");
CHECK(assert_equal(numerical,computed,error));
}
/* ************************************************************************* */
TEST( Pose3, Dtransform_from2)
{
Matrix computed = Dtransform_from2(T);
Matrix numerical = numericalDerivative22(transform_from,T,P);
CHECK(assert_equal(numerical,computed,error));
}
/* ************************************************************************* */
TEST( Pose3, Dtransform_to1)
{
Matrix computed = Dtransform_to1(T, P);
Matrix numerical = numericalDerivative21(transform_to,T,P);
CHECK(assert_equal(numerical,computed,error));
}
/* ************************************************************************* */
TEST( Pose3, Dtransform_to2)
{
Matrix computed = Dtransform_to2(T,P);
Matrix numerical = numericalDerivative22(transform_to,T,P);
CHECK(assert_equal(numerical,computed,error));
}
/* ************************************************************************* */
TEST( Pose3, transform_to_translate)
{
Point3 actual = transform_to(Pose3(Rot3(), Point3(1, 2, 3)), Point3(10.,20.,30.));
Point3 expected(9.,18.,27.);
CHECK(assert_equal(expected, actual));
}
/* ************************************************************************* */
TEST( Pose3, transform_to_rotate)
{
Pose3 transform(rodriguez(0,0,-1.570796), Point3());
Point3 actual = transform_to(transform, Point3(2,1,10));
Point3 expected(-1,2,10);
CHECK(assert_equal(expected, actual, 0.001));
}
/* ************************************************************************* */
TEST( Pose3, transform_to)
{
Pose3 transform(rodriguez(0,0,-1.570796), Point3(2,4, 0));
Point3 actual = transform_to(transform, Point3(3,2,10));
Point3 expected(2,1,10);
CHECK(assert_equal(expected, actual, 0.001));
}
/* ************************************************************************* */
TEST( Pose3, transform_from)
{
Point3 actual = transform_from(pose1, Point3());
Point3 expected = Point3(1.,2.,3.);
CHECK(assert_equal(expected, actual));
}
/* ************************************************************************* */
TEST( Pose3, transform_roundtrip)
{
Point3 actual = transform_from(pose1, transform_to(pose1, Point3(12., -0.11,7.0)));
Point3 expected(12., -0.11,7.0);
CHECK(assert_equal(expected, actual));
}
/* ************************************************************************* */
TEST( Pose3, transformPose_to_origin)
{
// transform to origin
Pose3 actual = pose1.transform_to(Pose3());
CHECK(assert_equal(pose1, actual, error));
}
/* ************************************************************************* */
TEST( Pose3, transformPose_to_itself)
{
// transform to itself
Pose3 actual = pose1.transform_to(pose1);
CHECK(assert_equal(Pose3(), actual, error));
}
/* ************************************************************************* */
TEST( Pose3, transformPose_to_translation)
{
// transform translation only
Rot3 r = rodriguez(-1.570796,0,0);
Pose3 pose2(r, Point3(21.,32.,13.));
Pose3 actual = pose2.transform_to(Pose3(Rot3(), Point3(1,2,3)));
Pose3 expected(r, Point3(20.,30.,10.));
CHECK(assert_equal(expected, actual, error));
}
/* ************************************************************************* */
TEST( Pose3, transformPose_to_simple_rotate)
{
// transform translation only
Rot3 r = rodriguez(0,0,-1.570796);
Pose3 pose2(r, Point3(21.,32.,13.));
Pose3 transform(r, Point3(1,2,3));
Pose3 actual = pose2.transform_to(transform);
Pose3 expected(Rot3(), Point3(-30.,20.,10.));
CHECK(assert_equal(expected, actual, 0.001));
}
/* ************************************************************************* */
TEST( Pose3, transformPose_to)
{
// transform to
Rot3 r = rodriguez(0,0,-1.570796); //-90 degree yaw
Rot3 r2 = rodriguez(0,0,0.698131701); //40 degree yaw
Pose3 pose2(r2, Point3(21.,32.,13.));
Pose3 transform(r, Point3(1,2,3));
Pose3 actual = pose2.transform_to(transform);
Pose3 expected(rodriguez(0,0,2.26892803), Point3(-30.,20.,10.));
CHECK(assert_equal(expected, actual, 0.001));
}
/* ************************************************************************* */
TEST( Pose3, composeTransform )
{
// known transform
Rot3 R1 = rodriguez(0, 0, -1.570796);
Pose3 expected(R1, Point3(1, 2, 3));
// current
Rot3 R2 = rodriguez(0, 0, 0.698131701);
Pose3 current(R2, Point3(21., 32., 13.));
// target
Pose3 target(rodriguez(0, 0, 2.26892803), Point3(-30., 20., 10.));
// calculate transform
// todo: which should this be?
//Pose3 actual = compose(current, target);
Pose3 actual = between<Pose3> (target, current);
//verify
CHECK(assert_equal(expected, actual, 0.001));
}
/* ************************************************************************* */
TEST(Pose3, manifold) {
//cout << "manifold" << endl;
Pose3 t1 = T;
Pose3 t2 = pose1;
Pose3 origin;
Vector d12 = logmap(t1,t2);
CHECK(assert_equal(t2, expmap(t1,d12)));
// todo: richard - commented out because this tests for "compose-style" (new) expmap
//CHECK(assert_equal(t2, expmap(origin,d12)*t1));
Vector d21 = logmap(t2,t1);
CHECK(assert_equal(t1, expmap(t2,d21)));
// todo: richard - commented out because this tests for "compose-style" (new) expmap
//CHECK(assert_equal(t1, expmap(origin,d21)*t2));
}
/* ************************************************************************* */
TEST( Pose3, between )
{
Pose3 expected = pose1 * inverse(T);
Pose3 actual = between(T, pose1);
CHECK(assert_equal(expected,actual));
Matrix numericalH1 = numericalDerivative21(between<Pose3> , T, pose1, 1e-5);
Matrix actualH1 = Dbetween1(T, pose1);
// CHECK(assert_equal(numericalH1,actualH1)); // chain rule does not work ??
Matrix actualH2 = Dbetween2(T, pose1);
Matrix numericalH2 = numericalDerivative22(between<Pose3> , T, pose1, 1e-5);
CHECK(assert_equal(numericalH2,actualH2));
}
/* ************************************************************************* */
int main(){ TestResult tr; return TestRegistry::runAllTests(tr);}
/* ************************************************************************* */