139 lines
3.4 KiB
C++
139 lines
3.4 KiB
C++
/*
|
|
* Rot2.h
|
|
*
|
|
* Created on: Dec 9, 2009
|
|
* Author: Frank Dellaert
|
|
*/
|
|
|
|
#ifndef ROT2_H_
|
|
#define ROT2_H_
|
|
|
|
#include "Testable.h"
|
|
#include "Point2.h"
|
|
#include "Matrix.h"
|
|
#include "Lie.h"
|
|
|
|
namespace gtsam {
|
|
|
|
/* Rotation matrix */
|
|
class Rot2: Testable<Rot2> {
|
|
private:
|
|
/** we store cos(theta) and sin(theta) */
|
|
double c_, s_;
|
|
|
|
public:
|
|
|
|
/** constructor from cos/sin */
|
|
Rot2(double c, double s) :
|
|
c_(c), s_(s) {
|
|
}
|
|
|
|
/** default constructor, zero rotation */
|
|
Rot2() : c_(1.0), s_(0.0) {}
|
|
|
|
/** constructor from angle == exponential map at identity */
|
|
Rot2(double theta) : c_(cos(theta)), s_(sin(theta)) {}
|
|
|
|
/** return angle */
|
|
double theta() const { return atan2(s_,c_); }
|
|
|
|
/** return cos */
|
|
double c() const { return c_; }
|
|
|
|
/** return sin */
|
|
double s() const { return s_; }
|
|
|
|
/** print */
|
|
void print(const std::string& s = "theta") const;
|
|
|
|
/** equals with an tolerance */
|
|
bool equals(const Rot2& R, double tol = 1e-9) const;
|
|
|
|
/** return 2*2 rotation matrix */
|
|
Matrix matrix() const;
|
|
|
|
/** return 2*2 transpose (inverse) rotation matrix */
|
|
Matrix transpose() const;
|
|
|
|
/** return 2*2 negative transpose */
|
|
Matrix negtranspose() const;
|
|
|
|
/** rotate from world to rotated = R'*p */
|
|
Point2 unrotate(const Point2& p) const;
|
|
|
|
/** friends */
|
|
friend Matrix Dunrotate1(const Rot2& R, const Point2& p);
|
|
|
|
private:
|
|
/** Serialization function */
|
|
friend class boost::serialization::access;
|
|
template<class Archive>
|
|
void serialize(Archive & ar, const unsigned int version) {
|
|
ar & BOOST_SERIALIZATION_NVP(c_);
|
|
ar & BOOST_SERIALIZATION_NVP(s_);
|
|
}
|
|
};
|
|
|
|
|
|
// Lie group functions
|
|
|
|
// Dimensionality of the tangent space
|
|
inline size_t dim(const Rot2&) { return 1; }
|
|
|
|
// Expmap around identity - create a rotation from an angle
|
|
template<> inline Rot2 expmap(const Vector& v) {
|
|
if (zero(v)) return (Rot2());
|
|
else return Rot2(v(0));
|
|
}
|
|
|
|
// Logmap around identity - return the angle of the rotation
|
|
inline Vector logmap(const Rot2& r) {
|
|
return Vector_(1, r.theta());
|
|
}
|
|
|
|
// Compose - make a new rotation by adding angles
|
|
inline Rot2 compose(const Rot2& r0, const Rot2& r1) {
|
|
return Rot2(
|
|
r0.c() * r1.c() - r0.s() * r1.s(),
|
|
r0.s() * r1.c() + r0.c() * r1.s());
|
|
}
|
|
|
|
// Syntactic sugar R1*R2 = compose(R1,R2)
|
|
inline Rot2 operator*(const Rot2& r0, const Rot2& r1) {
|
|
return compose(r0, r1);
|
|
}
|
|
|
|
// The inverse rotation - negative angle
|
|
inline Rot2 inverse(const Rot2& r) { return Rot2(r.c(), -r.s());}
|
|
|
|
// Shortcut to compose the inverse: invcompose(R0,R1) = inverse(R0)*R1
|
|
inline Rot2 invcompose(const Rot2& r0, const Rot2& r1) {
|
|
return Rot2(
|
|
r0.c() * r1.c() + r0.s() * r1.s(),
|
|
-r0.s() * r1.c() + r0.c() * r1.s());
|
|
}
|
|
|
|
|
|
/**
|
|
* rotate point from rotated coordinate frame to
|
|
* world = R*p
|
|
*/
|
|
Point2 rotate(const Rot2& R, const Point2& p);
|
|
inline Point2 operator*(const Rot2& R, const Point2& p) {
|
|
return rotate(R,p);
|
|
}
|
|
Matrix Drotate1(const Rot2& R, const Point2& p);
|
|
Matrix Drotate2(const Rot2& R); // does not depend on p !
|
|
|
|
/**
|
|
* rotate point from world to rotated
|
|
* frame = R'*p
|
|
*/
|
|
Point2 unrotate(const Rot2& R, const Point2& p);
|
|
Matrix Dunrotate1(const Rot2& R, const Point2& p);
|
|
Matrix Dunrotate2(const Rot2& R); // does not depend on p !
|
|
|
|
} // gtsam
|
|
|
|
#endif /* ROT2_H_ */
|