266 lines
		
	
	
		
			8.0 KiB
		
	
	
	
		
			C++
		
	
	
			
		
		
	
	
			266 lines
		
	
	
		
			8.0 KiB
		
	
	
	
		
			C++
		
	
	
| /*
 | |
|  * schedulingExample.cpp
 | |
|  * @brief hard scheduling example
 | |
|  * @date March 25, 2011
 | |
|  * @author Frank Dellaert
 | |
|  */
 | |
| 
 | |
| #define ENABLE_TIMING
 | |
| #define ADD_NO_CACHING
 | |
| #define ADD_NO_PRUNING
 | |
| #define ENABLE_OLD_TIMING
 | |
| #include <gtsam_unstable/discrete/Scheduler.h>
 | |
| #include <gtsam/base/debug.h>
 | |
| #include <gtsam/base/timing.h>
 | |
| 
 | |
| #include <boost/assign/std/vector.hpp>
 | |
| #include <boost/assign/std/map.hpp>
 | |
| #include <boost/optional.hpp>
 | |
| #include <boost/foreach.hpp>
 | |
| #include <boost/format.hpp>
 | |
| 
 | |
| #include <algorithm>
 | |
| 
 | |
| using namespace boost::assign;
 | |
| using namespace std;
 | |
| using namespace gtsam;
 | |
| 
 | |
| size_t NRSTUDENTS = 9;
 | |
| 
 | |
| bool NonZero(size_t i) {
 | |
| 	return i > 0;
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| void addStudent(Scheduler& s, size_t i) {
 | |
| 	switch (i) {
 | |
| 	case 0:
 | |
| 		s.addStudent("Pan, Yunpeng", "Controls", "Perception", "Mechanics", "Eric Johnson");
 | |
| 		break;
 | |
| 	case 1:
 | |
| 		s.addStudent("Sawhney, Rahul", "Controls", "AI", "Perception", "Henrik Christensen");
 | |
| 		break;
 | |
| 	case 2:
 | |
| 		s.addStudent("Akgun, Baris", "Controls", "AI", "HRI", "Andrea Thomaz");
 | |
| 		break;
 | |
| 	case 3:
 | |
| 		s.addStudent("Jiang, Shu", "Controls", "AI", "Perception", "Ron Arkin");
 | |
| 		break;
 | |
| 	case 4:
 | |
| 		s.addStudent("Grice, Phillip", "Controls", "Perception", "HRI", "Charlie Kemp");
 | |
| 		break;
 | |
| 	case 5:
 | |
| 		s.addStudent("Huaman, Ana", "Controls", "AI", "Perception", "Mike Stilman");
 | |
| 		break;
 | |
| 	case 6:
 | |
| 		s.addStudent("Levihn, Martin", "AI", "Autonomy", "Perception", "Mike Stilman");
 | |
| 		break;
 | |
| 	case 7:
 | |
| 		s.addStudent("Nieto, Carlos", "AI", "Autonomy", "Perception", "Henrik Christensen");
 | |
| 		break;
 | |
| 	case 8:
 | |
| 		s.addStudent("Robinette, Paul", "Controls", "AI", "HRI", "Ayanna Howard");
 | |
| 		break;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| Scheduler largeExample(size_t nrStudents = NRSTUDENTS) {
 | |
| 	string path("../../../gtsam_unstable/discrete/examples/");
 | |
| 	Scheduler s(nrStudents, path + "Doodle2012.csv");
 | |
| 
 | |
| 	s.addArea("Harvey Lipkin", "Mechanics");
 | |
| 	s.addArea("Jun Ueda", "Mechanics");
 | |
| 
 | |
| 	s.addArea("Patricio Vela", "Controls");
 | |
| 	s.addArea("Magnus Egerstedt", "Controls");
 | |
| 	s.addArea("Jun Ueda", "Controls");
 | |
| 	s.addArea("Panos Tsiotras", "Controls");
 | |
| 	s.addArea("Fumin Zhang", "Controls");
 | |
| 
 | |
| 	s.addArea("Henrik Christensen", "Perception");
 | |
| 	s.addArea("Aaron Bobick", "Perception");
 | |
| 
 | |
| 	s.addArea("Mike Stilman", "AI");
 | |
| //	s.addArea("Henrik Christensen", "AI");
 | |
| 	s.addArea("Ayanna Howard", "AI");
 | |
| 	s.addArea("Charles Isbell", "AI");
 | |
| 	s.addArea("Tucker Balch", "AI");
 | |
| 
 | |
| 	s.addArea("Ayanna Howard", "Autonomy");
 | |
| 	s.addArea("Charlie Kemp", "Autonomy");
 | |
| 	s.addArea("Tucker Balch", "Autonomy");
 | |
| 	s.addArea("Ron Arkin", "Autonomy");
 | |
| 
 | |
| 	s.addArea("Andrea Thomaz", "HRI");
 | |
| 	s.addArea("Karen Feigh", "HRI");
 | |
| 	s.addArea("Charlie Kemp", "HRI");
 | |
| 
 | |
| 	// add students
 | |
| 	for (size_t i = 0; i < nrStudents; i++)
 | |
| 		addStudent(s, i);
 | |
| 
 | |
| 	return s;
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| void runLargeExample() {
 | |
| 
 | |
| 	Scheduler scheduler = largeExample();
 | |
| 	scheduler.print();
 | |
| 
 | |
| 	// BUILD THE GRAPH !
 | |
| 	size_t addMutex = 3;
 | |
| 	// SETDEBUG("Scheduler::buildGraph", true);
 | |
| 	scheduler.buildGraph(addMutex);
 | |
| 
 | |
| 	// Do brute force product and output that to file
 | |
| 	if (scheduler.nrStudents() == 1) { // otherwise too slow
 | |
| 		DecisionTreeFactor product = scheduler.product();
 | |
| 		product.dot("scheduling-large", false);
 | |
| 	}
 | |
| 
 | |
| 	// Do exact inference
 | |
| 	//	SETDEBUG("timing-verbose", true);
 | |
| 	SETDEBUG("DiscreteConditional::DiscreteConditional", true);
 | |
| #define SAMPLE
 | |
| #ifdef SAMPLE
 | |
| 	tic(2, "large");
 | |
| 	DiscreteBayesNet::shared_ptr chordal = scheduler.eliminate();
 | |
| 	toc(2, "large");
 | |
| 	tictoc_finishedIteration();
 | |
| 	tictoc_print();
 | |
| 	for (size_t i=0;i<100;i++) {
 | |
| 		DiscreteFactor::sharedValues assignment = sample(*chordal);
 | |
| 		vector<size_t> stats(scheduler.nrFaculty());
 | |
| 		scheduler.accumulateStats(assignment, stats);
 | |
| 		size_t max = *max_element(stats.begin(), stats.end());
 | |
| 		size_t min = *min_element(stats.begin(), stats.end());
 | |
| 		size_t nz = count_if(stats.begin(), stats.end(), NonZero);
 | |
| //		cout << min << ", " << max << ", "  << nz << endl;
 | |
| 		if (nz >= 13 && min >=1 && max <= 4) {
 | |
| 			cout << "======================================================\n";
 | |
| 			scheduler.printAssignment(assignment);
 | |
| 		}
 | |
| 	}
 | |
| #else
 | |
| 	tic(2, "large");
 | |
| 	DiscreteFactor::sharedValues MPE = scheduler.optimalAssignment();
 | |
| 	toc(2, "large");
 | |
| 	tictoc_finishedIteration();
 | |
| 	tictoc_print();
 | |
| 	scheduler.printAssignment(MPE);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| // Solve a series of relaxed problems for maximum flexibility solution
 | |
| void solveStaged(size_t addMutex = 2) {
 | |
| 
 | |
| 	// super-hack! just count...
 | |
| 	bool debug = false;
 | |
| 	SETDEBUG("DiscreteConditional::COUNT", true);
 | |
| 	SETDEBUG("DiscreteConditional::DiscreteConditional", debug); // progress
 | |
| 
 | |
| 	// make a vector with slot availability, initially all 1
 | |
| 	// Reads file to get count :-)
 | |
| 	vector<double> slotsAvailable(largeExample(0).nrTimeSlots(), 1.0);
 | |
| 
 | |
| 	// now, find optimal value for each student, using relaxed mutex constraints
 | |
| 	for (size_t s = 0; s < NRSTUDENTS; s++) {
 | |
| 		// add all students first time, then drop last one second time, etc...
 | |
| 		Scheduler scheduler = largeExample(NRSTUDENTS - s);
 | |
| 		//scheduler.print(str(boost::format("Scheduler %d") % (NRSTUDENTS-s)));
 | |
| 
 | |
| 		// only allow slots not yet taken
 | |
| 		scheduler.setSlotsAvailable(slotsAvailable);
 | |
| 
 | |
| 		// BUILD THE GRAPH !
 | |
| 		scheduler.buildGraph(addMutex);
 | |
| 
 | |
| 		// Do EXACT INFERENCE
 | |
| 		tic_("eliminate");
 | |
| 		DiscreteBayesNet::shared_ptr chordal = scheduler.eliminate();
 | |
| 		toc_("eliminate");
 | |
| 
 | |
| 		// find root node
 | |
| 		DiscreteConditional::shared_ptr root = *(chordal->rbegin());
 | |
| 		if (debug)
 | |
| 			root->print(""/*scheduler.studentName(s)*/);
 | |
| 
 | |
| 		// solve root node only
 | |
| 		Scheduler::Values values;
 | |
| 		size_t bestSlot = root->solve(values);
 | |
| 
 | |
| 		// get corresponding count
 | |
| 		DiscreteKey dkey = scheduler.studentKey(NRSTUDENTS - 1 - s);
 | |
| 		values[dkey.first] = bestSlot;
 | |
| 		size_t count = (*root)(values);
 | |
| 
 | |
| 		// remove this slot from consideration
 | |
| 		slotsAvailable[bestSlot] = 0.0;
 | |
| 		cout << boost::format("%s = %d (%d), count = %d") % scheduler.studentName(NRSTUDENTS-1-s)
 | |
| 				% scheduler.slotName(bestSlot) % bestSlot % count << endl;
 | |
| 	}
 | |
| 	tictoc_print_();
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| // Sample from solution found above and evaluate cost function
 | |
| DiscreteBayesNet::shared_ptr createSampler(size_t i,
 | |
| 		size_t slot, vector<Scheduler>& schedulers) {
 | |
| 	Scheduler scheduler = largeExample(0); // todo: wrong nr students
 | |
| 	addStudent(scheduler, i);
 | |
| 	SETDEBUG("Scheduler::buildGraph", false);
 | |
| 	scheduler.addStudentSpecificConstraints(0, slot);
 | |
| 	DiscreteBayesNet::shared_ptr chordal = scheduler.eliminate();
 | |
| 	// chordal->print(scheduler[i].studentKey(0).name()); // large !
 | |
| 	schedulers.push_back(scheduler);
 | |
| 	return chordal;
 | |
| }
 | |
| 
 | |
| void sampleSolutions() {
 | |
| 
 | |
| 	vector<Scheduler> schedulers;
 | |
| 	vector<DiscreteBayesNet::shared_ptr> samplers(NRSTUDENTS);
 | |
| 
 | |
| 	// Given the time-slots, we can create NRSTUDENTS independent samplers
 | |
| 	vector<size_t> slots;
 | |
| 	slots += 3, 20, 2, 6, 5, 11, 1, 4; // given slots
 | |
| 	for (size_t i = 0; i < NRSTUDENTS; i++)
 | |
| 		samplers[i] = createSampler(i, slots[i], schedulers);
 | |
| 
 | |
| 	// now, sample schedules
 | |
| 	for (size_t n = 0; n < 500; n++) {
 | |
| 		vector<size_t> stats(19, 0);
 | |
| 		vector<Scheduler::sharedValues> samples;
 | |
| 		for (size_t i = 0; i < NRSTUDENTS; i++) {
 | |
| 			samples.push_back(sample(*samplers[i]));
 | |
| 			schedulers[i].accumulateStats(samples[i], stats);
 | |
| 		}
 | |
| 		size_t max = *max_element(stats.begin(), stats.end());
 | |
| 		size_t min = *min_element(stats.begin(), stats.end());
 | |
| 		size_t nz = count_if(stats.begin(), stats.end(), NonZero);
 | |
| 		if (nz >= 15 && max <= 2) {
 | |
| 			cout << boost::format(
 | |
| 					"Sampled schedule %d, min = %d, nz = %d, max = %d\n") % (n + 1) % min
 | |
| 					% nz % max;
 | |
| 			for (size_t i = 0; i < NRSTUDENTS; i++) {
 | |
| 				cout << schedulers[i].studentName(0) << " : " << schedulers[i].slotName(
 | |
| 						slots[i]) << endl;
 | |
| 				schedulers[i].printSpecial(samples[i]);
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| int main() {
 | |
| 	runLargeExample();
 | |
| //	solveStaged(3);
 | |
| //	sampleSolutions();
 | |
| 	return 0;
 | |
| }
 | |
| /* ************************************************************************* */
 | |
| 
 |