gtsam/examples/Hybrid_City10000.cpp

290 lines
9.6 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010-2020, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file Hybrid_City10000.cpp
* @brief Example of using hybrid estimation
* with multiple odometry measurements.
* @author Varun Agrawal
* @date January 22, 2025
*/
#include <gtsam/geometry/Pose2.h>
#include <gtsam/hybrid/HybridNonlinearFactor.h>
#include <gtsam/hybrid/HybridNonlinearFactorGraph.h>
#include <gtsam/hybrid/HybridSmoother.h>
#include <gtsam/hybrid/HybridValues.h>
#include <gtsam/inference/Symbol.h>
#include <gtsam/nonlinear/Values.h>
#include <gtsam/slam/BetweenFactor.h>
#include <gtsam/slam/PriorFactor.h>
#include <gtsam/slam/dataset.h>
#include <time.h>
#include <boost/algorithm/string/classification.hpp>
#include <boost/algorithm/string/split.hpp>
#include <fstream>
#include <string>
#include <vector>
using namespace std;
using namespace gtsam;
using namespace boost::algorithm;
using symbol_shorthand::L;
using symbol_shorthand::M;
using symbol_shorthand::X;
// Testing params
const size_t max_loop_count = 3000; // 2000; // 200 //2000 //8000
auto prior_noise_model = noiseModel::Diagonal::Sigmas(
(Vector(3) << 0.0001, 0.0001, 0.0001).finished());
auto pose_noise_model = noiseModel::Diagonal::Sigmas(
(Vector(3) << 1.0 / 30.0, 1.0 / 30.0, 1.0 / 100.0).finished());
class Experiment {
/**
* @brief Write the result of optimization to file.
*
* @param result The Values object with the final result.
* @param num_poses The number of poses to write to the file.
* @param filename The file name to save the result to.
*/
void write_result(const Values& result, size_t num_poses,
const std::string& filename = "Hybrid_city10000.txt") {
ofstream outfile;
outfile.open(filename);
for (size_t i = 0; i < num_poses; ++i) {
Pose2 out_pose = result.at<Pose2>(X(i));
outfile << out_pose.x() << " " << out_pose.y() << " " << out_pose.theta()
<< std::endl;
}
outfile.close();
std::cout << "output written to " << filename << std::endl;
}
/**
* @brief Create a hybrid loop closure factor where
* 0 - loose noise model and 1 - loop noise model.
*/
HybridNonlinearFactor HybridLoopClosureFactor(size_t loop_counter,
size_t key_s, size_t key_t,
const Pose2& measurement) {
DiscreteKey l(L(loop_counter), 2);
auto f0 = std::make_shared<BetweenFactor<Pose2>>(
X(key_s), X(key_t), measurement,
noiseModel::Diagonal::Sigmas(Vector3::Ones() * 100));
auto f1 = std::make_shared<BetweenFactor<Pose2>>(
X(key_s), X(key_t), measurement, pose_noise_model);
std::vector<NonlinearFactorValuePair> factors{{f0, 0.0}, {f1, 0.0}};
HybridNonlinearFactor mixtureFactor(l, {f0, f1});
return mixtureFactor;
}
// Create hybrid odometry factor with discrete measurement choices
HybridNonlinearFactor HybridOdometryFactor(
size_t num_measurements, size_t key_s, size_t key_t, const DiscreteKey& m,
const std::vector<Pose2>& pose_array,
const SharedNoiseModel& pose_noise_model) {
auto f0 = std::make_shared<BetweenFactor<Pose2>>(
X(key_s), X(key_t), pose_array[0], pose_noise_model);
auto f1 = std::make_shared<BetweenFactor<Pose2>>(
X(key_s), X(key_t), pose_array[1], pose_noise_model);
std::vector<NonlinearFactorValuePair> factors{{f0, 0.0}, {f1, 0.0}};
HybridNonlinearFactor mixtureFactor(m, factors);
// HybridNonlinearFactor mixtureFactor(m, {f0, f1});
return mixtureFactor;
}
// Perform smoother update and optimize the graph
void SmootherUpdate(HybridSmoother& smoother,
HybridNonlinearFactorGraph& graph, const Values& initial,
size_t maxNrHypotheses, Values* result) {
HybridGaussianFactorGraph linearized = *graph.linearize(initial);
// std::cout << "index: " << index << std::endl;
smoother.update(linearized, maxNrHypotheses);
graph.resize(0);
HybridValues delta = smoother.hybridBayesNet().optimize();
result->insert_or_assign(initial.retract(delta.continuous()));
}
public:
/// Construct with filename of experiment to run
Experiment(const std::string& filename) {
ifstream in(filename);
size_t discrete_count = 0, index = 0;
size_t loop_count = 0;
size_t nrHybridFactors = 0;
std::list<double> time_list;
HybridSmoother smoother(0.99);
HybridNonlinearFactorGraph graph;
Values initial, result;
size_t maxNrHypotheses = 3;
double x = 0.0;
double y = 0.0;
double rad = 0.0;
Pose2 prior_pose(x, y, rad);
initial.insert(X(0), prior_pose);
graph.push_back(PriorFactor<Pose2>(X(0), prior_pose, prior_noise_model));
std::vector<std::pair<size_t, double>> smoother_update_times;
clock_t before_update = clock();
SmootherUpdate(smoother, graph, initial, maxNrHypotheses, &result);
clock_t after_update = clock();
smoother_update_times.push_back({index, after_update - before_update});
size_t key_s, key_t{0};
clock_t start_time = clock();
std::string str;
while (getline(in, str) && index < max_loop_count) {
vector<string> parts;
split(parts, str, is_any_of(" "));
key_s = stoi(parts[1]);
key_t = stoi(parts[3]);
int num_measurements = stoi(parts[5]);
vector<Pose2> pose_array(num_measurements);
for (int i = 0; i < num_measurements; ++i) {
x = stod(parts[6 + 3 * i]);
y = stod(parts[7 + 3 * i]);
rad = stod(parts[8 + 3 * i]);
pose_array[i] = Pose2(x, y, rad);
}
// Flag if we should run smoother update
bool smoother_update = false;
// Take the first one as the initial estimate
Pose2 odom_pose = pose_array[0];
if (key_s == key_t - 1) { // odometry
if (num_measurements > 1) {
DiscreteKey m(M(discrete_count), num_measurements);
// Add hybrid factor which considers both measurements
HybridNonlinearFactor mixtureFactor = HybridOdometryFactor(
num_measurements, key_s, key_t, m, pose_array, pose_noise_model);
graph.push_back(mixtureFactor);
discrete_count++;
smoother_update = true;
} else {
graph.add(BetweenFactor<Pose2>(X(key_s), X(key_t), odom_pose,
pose_noise_model));
}
initial.insert(X(key_t), initial.at<Pose2>(X(key_s)) * odom_pose);
} else { // loop
HybridNonlinearFactor loop_factor =
HybridLoopClosureFactor(loop_count, key_s, key_t, odom_pose);
graph.add(loop_factor);
smoother_update = true;
loop_count++;
}
if (smoother_update) {
gttic_(SmootherUpdate);
before_update = clock();
SmootherUpdate(smoother, graph, initial, maxNrHypotheses, &result);
after_update = clock();
smoother_update_times.push_back({index, after_update - before_update});
gttoc_(SmootherUpdate);
}
// Print loop index and time taken in processor clock ticks
// if (index % 50 == 0 && key_s != key_t - 1) {
if (index % 100 == 0) {
std::cout << "index: " << index << std::endl;
std::cout << "acc_time: " << time_list.back() / CLOCKS_PER_SEC
<< std::endl;
// delta.discrete().print("The Discrete Assignment");
tictoc_finishedIteration_();
tictoc_print_();
}
if (key_s == key_t - 1) {
clock_t cur_time = clock();
time_list.push_back(cur_time - start_time);
}
index += 1;
}
before_update = clock();
SmootherUpdate(smoother, graph, initial, maxNrHypotheses, &result);
after_update = clock();
smoother_update_times.push_back({index, after_update - before_update});
gttic_(HybridSmootherOptimize);
HybridValues delta = smoother.hybridBayesNet().optimize();
gttoc_(HybridSmootherOptimize);
result.insert_or_assign(initial.retract(delta.continuous()));
std::cout << "Final error: " << smoother.hybridBayesNet().error(delta)
<< std::endl;
clock_t end_time = clock();
clock_t total_time = end_time - start_time;
cout << "total_time: " << total_time / CLOCKS_PER_SEC << " seconds" << endl;
/// Write result to file
write_result(result, (key_t + 1), "Hybrid_City10000.txt");
// TODO Write to file
// for (size_t i = 0; i < smoother_update_times.size(); i++) {
// auto p = smoother_update_times.at(i);
// std::cout << p.first << ", " << p.second / CLOCKS_PER_SEC <<
// std::endl;
// }
ofstream outfile_time;
std::string time_file_name = "Hybrid_City10000_time.txt";
outfile_time.open(time_file_name);
for (auto acc_time : time_list) {
outfile_time << acc_time << std::endl;
}
outfile_time.close();
cout << "output " << time_file_name << " file." << endl;
std::cout << nrHybridFactors << std::endl;
}
};
/* ************************************************************************* */
int main(int argc, char* argv[]) {
Experiment(findExampleDataFile("T1_city10000_04.txt"));
// Experiment("../data/mh_T1_city10000_04.txt"); //Type #1 only
// Experiment("../data/mh_T3b_city10000_10.txt"); //Type #3 only
// Experiment("../data/mh_T1_T3_city10000_04.txt"); //Type #1 + Type #3
// Experiment("../data/mh_All_city10000_groundtruth.txt");
return 0;
}