1114 lines
44 KiB
C++
1114 lines
44 KiB
C++
/* ----------------------------------------------------------------------------
|
|
|
|
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
|
* Atlanta, Georgia 30332-0415
|
|
* All Rights Reserved
|
|
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
|
|
|
* See LICENSE for the license information
|
|
|
|
* -------------------------------------------------------------------------- */
|
|
|
|
/**
|
|
* @file TestSmartStereoProjectionPoseFactor.cpp
|
|
* @brief Unit tests for ProjectionFactor Class
|
|
* @author Chris Beall
|
|
* @author Luca Carlone
|
|
* @author Zsolt Kira
|
|
* @date Sept 2013
|
|
*/
|
|
|
|
// TODO #include <gtsam/slam/tests/smartFactorScenarios.h>
|
|
#include <gtsam_unstable/slam/SmartStereoProjectionPoseFactor.h>
|
|
#include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h>
|
|
#include <gtsam/slam/PoseTranslationPrior.h>
|
|
#include <gtsam/slam/ProjectionFactor.h>
|
|
#include <gtsam/slam/StereoFactor.h>
|
|
#include <boost/assign/std/vector.hpp>
|
|
#include <CppUnitLite/TestHarness.h>
|
|
#include <iostream>
|
|
|
|
using namespace std;
|
|
using namespace boost::assign;
|
|
using namespace gtsam;
|
|
|
|
// make a realistic calibration matrix
|
|
static double fov = 60; // degrees
|
|
static size_t w = 640, h = 480;
|
|
static double b = 1;
|
|
|
|
static Cal3_S2Stereo::shared_ptr K(new Cal3_S2Stereo(fov, w, h, b));
|
|
static Cal3_S2Stereo::shared_ptr K2(
|
|
new Cal3_S2Stereo(1500, 1200, 0, 640, 480, b));
|
|
|
|
|
|
static SmartStereoProjectionParams params;
|
|
|
|
// static bool manageDegeneracy = true;
|
|
// Create a noise model for the pixel error
|
|
static SharedNoiseModel model(noiseModel::Isotropic::Sigma(3, 0.1));
|
|
|
|
// Convenience for named keys
|
|
using symbol_shorthand::X;
|
|
using symbol_shorthand::L;
|
|
|
|
// tests data
|
|
static Symbol x1('X', 1);
|
|
static Symbol x2('X', 2);
|
|
static Symbol x3('X', 3);
|
|
|
|
static Key poseKey1(x1);
|
|
static StereoPoint2 measurement1(323.0, 300.0, 240.0); //potentially use more reasonable measurement value?
|
|
static Pose3 body_P_sensor1(Rot3::RzRyRx(-M_PI_2, 0.0, -M_PI_2),
|
|
Point3(0.25, -0.10, 1.0));
|
|
|
|
vector<StereoPoint2> stereo_projectToMultipleCameras(const StereoCamera& cam1,
|
|
const StereoCamera& cam2, const StereoCamera& cam3, Point3 landmark) {
|
|
|
|
vector<StereoPoint2> measurements_cam;
|
|
|
|
StereoPoint2 cam1_uv1 = cam1.project(landmark);
|
|
StereoPoint2 cam2_uv1 = cam2.project(landmark);
|
|
StereoPoint2 cam3_uv1 = cam3.project(landmark);
|
|
measurements_cam.push_back(cam1_uv1);
|
|
measurements_cam.push_back(cam2_uv1);
|
|
measurements_cam.push_back(cam3_uv1);
|
|
|
|
return measurements_cam;
|
|
}
|
|
|
|
LevenbergMarquardtParams lm_params;
|
|
|
|
/* ************************************************************************* */
|
|
TEST( SmartStereoProjectionPoseFactor, Constructor) {
|
|
SmartStereoProjectionPoseFactor::shared_ptr factor1(new SmartStereoProjectionPoseFactor(model));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( SmartStereoProjectionPoseFactor, Constructor2) {
|
|
SmartStereoProjectionPoseFactor factor1(model, params);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( SmartStereoProjectionPoseFactor, Constructor3) {
|
|
SmartStereoProjectionPoseFactor::shared_ptr factor1(new SmartStereoProjectionPoseFactor(model));
|
|
factor1->add(measurement1, poseKey1, K);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( SmartStereoProjectionPoseFactor, Constructor4) {
|
|
SmartStereoProjectionPoseFactor factor1(model, params);
|
|
factor1.add(measurement1, poseKey1, K);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( SmartStereoProjectionPoseFactor, Equals ) {
|
|
SmartStereoProjectionPoseFactor::shared_ptr factor1(new SmartStereoProjectionPoseFactor(model));
|
|
factor1->add(measurement1, poseKey1, K);
|
|
|
|
SmartStereoProjectionPoseFactor::shared_ptr factor2(new SmartStereoProjectionPoseFactor(model));
|
|
factor2->add(measurement1, poseKey1, K);
|
|
|
|
CHECK(assert_equal(*factor1, *factor2));
|
|
}
|
|
|
|
/* *************************************************************************/
|
|
TEST_UNSAFE( SmartStereoProjectionPoseFactor, noiseless ) {
|
|
// create first camera. Looking along X-axis, 1 meter above ground plane (x-y)
|
|
Pose3 level_pose = Pose3(Rot3::Ypr(-M_PI / 2, 0., -M_PI / 2),
|
|
Point3(0, 0, 1));
|
|
StereoCamera level_camera(level_pose, K2);
|
|
|
|
// create second camera 1 meter to the right of first camera
|
|
Pose3 level_pose_right = level_pose * Pose3(Rot3(), Point3(1, 0, 0));
|
|
StereoCamera level_camera_right(level_pose_right, K2);
|
|
|
|
// landmark ~5 meters infront of camera
|
|
Point3 landmark(5, 0.5, 1.2);
|
|
|
|
// 1. Project two landmarks into two cameras and triangulate
|
|
StereoPoint2 level_uv = level_camera.project(landmark);
|
|
StereoPoint2 level_uv_right = level_camera_right.project(landmark);
|
|
|
|
Values values;
|
|
values.insert(x1, level_pose);
|
|
values.insert(x2, level_pose_right);
|
|
|
|
SmartStereoProjectionPoseFactor factor1(model);
|
|
factor1.add(level_uv, x1, K2);
|
|
factor1.add(level_uv_right, x2, K2);
|
|
|
|
double actualError = factor1.error(values);
|
|
double expectedError = 0.0;
|
|
EXPECT_DOUBLES_EQUAL(expectedError, actualError, 1e-7);
|
|
|
|
SmartStereoProjectionPoseFactor::Cameras cameras = factor1.cameras(values);
|
|
double actualError2 = factor1.totalReprojectionError(cameras);
|
|
EXPECT_DOUBLES_EQUAL(expectedError, actualError2, 1e-7);
|
|
|
|
// test vector of errors
|
|
//Vector actual = factor1.unwhitenedError(values);
|
|
//EXPECT(assert_equal(zero(4),actual,1e-8));
|
|
}
|
|
|
|
/* *************************************************************************/
|
|
TEST( SmartStereoProjectionPoseFactor, noisy ) {
|
|
// create first camera. Looking along X-axis, 1 meter above ground plane (x-y)
|
|
Pose3 level_pose = Pose3(Rot3::Ypr(-M_PI / 2, 0., -M_PI / 2),
|
|
Point3(0, 0, 1));
|
|
StereoCamera level_camera(level_pose, K2);
|
|
|
|
// create second camera 1 meter to the right of first camera
|
|
Pose3 level_pose_right = level_pose * Pose3(Rot3(), Point3(1, 0, 0));
|
|
StereoCamera level_camera_right(level_pose_right, K2);
|
|
|
|
// landmark ~5 meters infront of camera
|
|
Point3 landmark(5, 0.5, 1.2);
|
|
|
|
// 1. Project two landmarks into two cameras and triangulate
|
|
StereoPoint2 pixelError(0.2, 0.2, 0);
|
|
StereoPoint2 level_uv = level_camera.project(landmark) + pixelError;
|
|
StereoPoint2 level_uv_right = level_camera_right.project(landmark);
|
|
|
|
Values values;
|
|
values.insert(x1, level_pose);
|
|
Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI / 10, 0., -M_PI / 10),
|
|
Point3(0.5, 0.1, 0.3));
|
|
values.insert(x2, level_pose_right.compose(noise_pose));
|
|
|
|
SmartStereoProjectionPoseFactor::shared_ptr factor1(new SmartStereoProjectionPoseFactor(model));
|
|
factor1->add(level_uv, x1, K);
|
|
factor1->add(level_uv_right, x2, K);
|
|
|
|
double actualError1 = factor1->error(values);
|
|
|
|
SmartStereoProjectionPoseFactor::shared_ptr factor2(new SmartStereoProjectionPoseFactor(model));
|
|
vector<StereoPoint2> measurements;
|
|
measurements.push_back(level_uv);
|
|
measurements.push_back(level_uv_right);
|
|
|
|
vector<boost::shared_ptr<Cal3_S2Stereo> > Ks; ///< shared pointer to calibration object (one for each camera)
|
|
Ks.push_back(K);
|
|
Ks.push_back(K);
|
|
|
|
vector<Key> views;
|
|
views.push_back(x1);
|
|
views.push_back(x2);
|
|
|
|
factor2->add(measurements, views, Ks);
|
|
|
|
double actualError2 = factor2->error(values);
|
|
|
|
DOUBLES_EQUAL(actualError1, actualError2, 1e-7);
|
|
}
|
|
|
|
/* *************************************************************************/
|
|
TEST( SmartStereoProjectionPoseFactor, 3poses_smart_projection_factor ) {
|
|
|
|
// create first camera. Looking along X-axis, 1 meter above ground plane (x-y)
|
|
Pose3 pose1 = Pose3(Rot3::Ypr(-M_PI / 2, 0., -M_PI / 2), Point3(0, 0, 1));
|
|
StereoCamera cam1(pose1, K2);
|
|
|
|
// create second camera 1 meter to the right of first camera
|
|
Pose3 pose2 = pose1 * Pose3(Rot3(), Point3(1, 0, 0));
|
|
StereoCamera cam2(pose2, K2);
|
|
|
|
// create third camera 1 meter above the first camera
|
|
Pose3 pose3 = pose1 * Pose3(Rot3(), Point3(0, -1, 0));
|
|
StereoCamera cam3(pose3, K2);
|
|
|
|
// three landmarks ~5 meters infront of camera
|
|
Point3 landmark1(5, 0.5, 1.2);
|
|
Point3 landmark2(5, -0.5, 1.2);
|
|
Point3 landmark3(3, 0, 3.0);
|
|
|
|
// 1. Project three landmarks into three cameras and triangulate
|
|
vector<StereoPoint2> measurements_l1 = stereo_projectToMultipleCameras(cam1,
|
|
cam2, cam3, landmark1);
|
|
vector<StereoPoint2> measurements_l2 = stereo_projectToMultipleCameras(cam1,
|
|
cam2, cam3, landmark2);
|
|
vector<StereoPoint2> measurements_l3 = stereo_projectToMultipleCameras(cam1,
|
|
cam2, cam3, landmark3);
|
|
|
|
vector<Key> views;
|
|
views.push_back(x1);
|
|
views.push_back(x2);
|
|
views.push_back(x3);
|
|
|
|
SmartStereoProjectionParams smart_params;
|
|
smart_params.triangulation.enableEPI = true;
|
|
SmartStereoProjectionPoseFactor::shared_ptr smartFactor1(new SmartStereoProjectionPoseFactor(model, smart_params));
|
|
smartFactor1->add(measurements_l1, views, K2);
|
|
|
|
SmartStereoProjectionPoseFactor::shared_ptr smartFactor2(new SmartStereoProjectionPoseFactor(model, smart_params));
|
|
smartFactor2->add(measurements_l2, views, K2);
|
|
|
|
SmartStereoProjectionPoseFactor::shared_ptr smartFactor3(new SmartStereoProjectionPoseFactor(model, smart_params));
|
|
smartFactor3->add(measurements_l3, views, K2);
|
|
|
|
const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10);
|
|
|
|
|
|
|
|
NonlinearFactorGraph graph;
|
|
graph.push_back(smartFactor1);
|
|
graph.push_back(smartFactor2);
|
|
graph.push_back(smartFactor3);
|
|
graph.push_back(PriorFactor<Pose3>(x1, pose1, noisePrior));
|
|
graph.push_back(PriorFactor<Pose3>(x2, pose2, noisePrior));
|
|
|
|
// Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI/10, 0., -M_PI/10), Point3(0.5,0.1,0.3)); // noise from regular projection factor test below
|
|
Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI / 100, 0., -M_PI / 100),
|
|
Point3(0.1, 0.1, 0.1)); // smaller noise
|
|
Values values;
|
|
values.insert(x1, pose1);
|
|
values.insert(x2, pose2);
|
|
// initialize third pose with some noise, we expect it to move back to original pose3
|
|
values.insert(x3, pose3 * noise_pose);
|
|
EXPECT(
|
|
assert_equal(
|
|
Pose3(
|
|
Rot3(0, -0.0314107591, 0.99950656, -0.99950656, -0.0313952598,
|
|
-0.000986635786, 0.0314107591, -0.999013364, -0.0313952598),
|
|
Point3(0.1, -0.1, 1.9)), values.at<Pose3>(x3)));
|
|
|
|
// cout << std::setprecision(10) << "\n----SmartStereoFactor graph initial error: " << graph.error(values) << endl;
|
|
EXPECT_DOUBLES_EQUAL(797312.95069157204, graph.error(values), 1e-7);
|
|
|
|
// get triangulated landmarks from smart factors
|
|
Point3 landmark1_smart = *smartFactor1->point();
|
|
Point3 landmark2_smart = *smartFactor2->point();
|
|
Point3 landmark3_smart = *smartFactor3->point();
|
|
|
|
Values result;
|
|
gttic_(SmartStereoProjectionPoseFactor);
|
|
LevenbergMarquardtOptimizer optimizer(graph, values, lm_params);
|
|
result = optimizer.optimize();
|
|
gttoc_(SmartStereoProjectionPoseFactor);
|
|
tictoc_finishedIteration_();
|
|
|
|
EXPECT_DOUBLES_EQUAL(0, graph.error(result), 1e-5);
|
|
|
|
// cout << std::setprecision(10) << "SmartStereoFactor graph optimized error: " << graph.error(result) << endl;
|
|
|
|
GaussianFactorGraph::shared_ptr GFG = graph.linearize(result);
|
|
VectorValues delta = GFG->optimize();
|
|
VectorValues expected = VectorValues::Zero(delta);
|
|
EXPECT(assert_equal(expected, delta, 1e-6));
|
|
|
|
// result.print("results of 3 camera, 3 landmark optimization \n");
|
|
EXPECT(assert_equal(pose3, result.at<Pose3>(x3)));
|
|
|
|
/* ***************************************************************
|
|
* Same problem with regular Stereo factors, expect same error!
|
|
* ****************************************************************/
|
|
|
|
// landmark1_smart.print("landmark1_smart");
|
|
// landmark2_smart.print("landmark2_smart");
|
|
// landmark3_smart.print("landmark3_smart");
|
|
|
|
// add landmarks to values
|
|
values.insert(L(1), landmark1_smart);
|
|
values.insert(L(2), landmark2_smart);
|
|
values.insert(L(3), landmark3_smart);
|
|
|
|
// add factors
|
|
NonlinearFactorGraph graph2;
|
|
|
|
graph2.push_back(PriorFactor<Pose3>(x1, pose1, noisePrior));
|
|
graph2.push_back(PriorFactor<Pose3>(x2, pose2, noisePrior));
|
|
|
|
typedef GenericStereoFactor<Pose3, Point3> ProjectionFactor;
|
|
|
|
bool verboseCheirality = true;
|
|
|
|
graph2.push_back(ProjectionFactor(measurements_l1[0], model, x1, L(1), K2, false, verboseCheirality));
|
|
graph2.push_back(ProjectionFactor(measurements_l1[1], model, x2, L(1), K2, false, verboseCheirality));
|
|
graph2.push_back(ProjectionFactor(measurements_l1[2], model, x3, L(1), K2, false, verboseCheirality));
|
|
|
|
graph2.push_back(ProjectionFactor(measurements_l2[0], model, x1, L(2), K2, false, verboseCheirality));
|
|
graph2.push_back(ProjectionFactor(measurements_l2[1], model, x2, L(2), K2, false, verboseCheirality));
|
|
graph2.push_back(ProjectionFactor(measurements_l2[2], model, x3, L(2), K2, false, verboseCheirality));
|
|
|
|
graph2.push_back(ProjectionFactor(measurements_l3[0], model, x1, L(3), K2, false, verboseCheirality));
|
|
graph2.push_back(ProjectionFactor(measurements_l3[1], model, x2, L(3), K2, false, verboseCheirality));
|
|
graph2.push_back(ProjectionFactor(measurements_l3[2], model, x3, L(3), K2, false, verboseCheirality));
|
|
|
|
// cout << std::setprecision(10) << "\n----StereoFactor graph initial error: " << graph2.error(values) << endl;
|
|
EXPECT_DOUBLES_EQUAL(797312.95069157204, graph2.error(values), 1e-7);
|
|
|
|
LevenbergMarquardtOptimizer optimizer2(graph2, values, lm_params);
|
|
Values result2 = optimizer2.optimize();
|
|
EXPECT_DOUBLES_EQUAL(0, graph2.error(result2), 1e-5);
|
|
|
|
// cout << std::setprecision(10) << "StereoFactor graph optimized error: " << graph2.error(result2) << endl;
|
|
|
|
}
|
|
|
|
/* *************************************************************************/
|
|
TEST( SmartStereoProjectionPoseFactor, jacobianSVD ) {
|
|
|
|
vector<Key> views;
|
|
views.push_back(x1);
|
|
views.push_back(x2);
|
|
views.push_back(x3);
|
|
|
|
// create first camera. Looking along X-axis, 1 meter above ground plane (x-y)
|
|
Pose3 pose1 = Pose3(Rot3::Ypr(-M_PI / 2, 0., -M_PI / 2), Point3(0, 0, 1));
|
|
StereoCamera cam1(pose1, K);
|
|
// create second camera 1 meter to the right of first camera
|
|
Pose3 pose2 = pose1 * Pose3(Rot3(), Point3(1, 0, 0));
|
|
StereoCamera cam2(pose2, K);
|
|
// create third camera 1 meter above the first camera
|
|
Pose3 pose3 = pose1 * Pose3(Rot3(), Point3(0, -1, 0));
|
|
StereoCamera cam3(pose3, K);
|
|
|
|
// three landmarks ~5 meters infront of camera
|
|
Point3 landmark1(5, 0.5, 1.2);
|
|
Point3 landmark2(5, -0.5, 1.2);
|
|
Point3 landmark3(3, 0, 3.0);
|
|
|
|
// 1. Project three landmarks into three cameras and triangulate
|
|
vector<StereoPoint2> measurements_cam1 = stereo_projectToMultipleCameras(cam1,
|
|
cam2, cam3, landmark1);
|
|
vector<StereoPoint2> measurements_cam2 = stereo_projectToMultipleCameras(cam1,
|
|
cam2, cam3, landmark2);
|
|
vector<StereoPoint2> measurements_cam3 = stereo_projectToMultipleCameras(cam1,
|
|
cam2, cam3, landmark3);
|
|
|
|
SmartStereoProjectionParams params;
|
|
params.setLinearizationMode(JACOBIAN_SVD);
|
|
|
|
SmartStereoProjectionPoseFactor::shared_ptr smartFactor1( new SmartStereoProjectionPoseFactor(model, params));
|
|
smartFactor1->add(measurements_cam1, views, K);
|
|
|
|
SmartStereoProjectionPoseFactor::shared_ptr smartFactor2(new SmartStereoProjectionPoseFactor(model, params));
|
|
smartFactor2->add(measurements_cam2, views, K);
|
|
|
|
SmartStereoProjectionPoseFactor::shared_ptr smartFactor3(new SmartStereoProjectionPoseFactor(model, params));
|
|
smartFactor3->add(measurements_cam3, views, K);
|
|
|
|
const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10);
|
|
|
|
NonlinearFactorGraph graph;
|
|
graph.push_back(smartFactor1);
|
|
graph.push_back(smartFactor2);
|
|
graph.push_back(smartFactor3);
|
|
graph.push_back(PriorFactor<Pose3>(x1, pose1, noisePrior));
|
|
graph.push_back(PriorFactor<Pose3>(x2, pose2, noisePrior));
|
|
|
|
// Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI/10, 0., -M_PI/10), Point3(0.5,0.1,0.3)); // noise from regular projection factor test below
|
|
Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI / 100, 0., -M_PI / 100),
|
|
Point3(0.1, 0.1, 0.1)); // smaller noise
|
|
Values values;
|
|
values.insert(x1, pose1);
|
|
values.insert(x2, pose2);
|
|
values.insert(x3, pose3 * noise_pose);
|
|
|
|
Values result;
|
|
LevenbergMarquardtOptimizer optimizer(graph, values, lm_params);
|
|
result = optimizer.optimize();
|
|
EXPECT(assert_equal(pose3, result.at<Pose3>(x3)));
|
|
}
|
|
|
|
/* *************************************************************************/
|
|
TEST( SmartStereoProjectionPoseFactor, landmarkDistance ) {
|
|
|
|
// double excludeLandmarksFutherThanDist = 2;
|
|
|
|
vector<Key> views;
|
|
views.push_back(x1);
|
|
views.push_back(x2);
|
|
views.push_back(x3);
|
|
|
|
// create first camera. Looking along X-axis, 1 meter above ground plane (x-y)
|
|
Pose3 pose1 = Pose3(Rot3::Ypr(-M_PI / 2, 0., -M_PI / 2), Point3(0, 0, 1));
|
|
StereoCamera cam1(pose1, K);
|
|
// create second camera 1 meter to the right of first camera
|
|
Pose3 pose2 = pose1 * Pose3(Rot3(), Point3(1, 0, 0));
|
|
StereoCamera cam2(pose2, K);
|
|
// create third camera 1 meter above the first camera
|
|
Pose3 pose3 = pose1 * Pose3(Rot3(), Point3(0, -1, 0));
|
|
StereoCamera cam3(pose3, K);
|
|
|
|
// three landmarks ~5 meters infront of camera
|
|
Point3 landmark1(5, 0.5, 1.2);
|
|
Point3 landmark2(5, -0.5, 1.2);
|
|
Point3 landmark3(3, 0, 3.0);
|
|
|
|
// 1. Project three landmarks into three cameras and triangulate
|
|
vector<StereoPoint2> measurements_cam1 = stereo_projectToMultipleCameras(cam1,
|
|
cam2, cam3, landmark1);
|
|
vector<StereoPoint2> measurements_cam2 = stereo_projectToMultipleCameras(cam1,
|
|
cam2, cam3, landmark2);
|
|
vector<StereoPoint2> measurements_cam3 = stereo_projectToMultipleCameras(cam1,
|
|
cam2, cam3, landmark3);
|
|
|
|
SmartStereoProjectionParams params;
|
|
params.setLinearizationMode(JACOBIAN_SVD);
|
|
params.setLandmarkDistanceThreshold(2);
|
|
|
|
SmartStereoProjectionPoseFactor::shared_ptr smartFactor1(new SmartStereoProjectionPoseFactor(model, params));
|
|
smartFactor1->add(measurements_cam1, views, K);
|
|
|
|
SmartStereoProjectionPoseFactor::shared_ptr smartFactor2(new SmartStereoProjectionPoseFactor(model, params));
|
|
smartFactor2->add(measurements_cam2, views, K);
|
|
|
|
SmartStereoProjectionPoseFactor::shared_ptr smartFactor3(new SmartStereoProjectionPoseFactor(model, params));
|
|
smartFactor3->add(measurements_cam3, views, K);
|
|
|
|
const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10);
|
|
|
|
NonlinearFactorGraph graph;
|
|
graph.push_back(smartFactor1);
|
|
graph.push_back(smartFactor2);
|
|
graph.push_back(smartFactor3);
|
|
graph.push_back(PriorFactor<Pose3>(x1, pose1, noisePrior));
|
|
graph.push_back(PriorFactor<Pose3>(x2, pose2, noisePrior));
|
|
|
|
// Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI/10, 0., -M_PI/10), Point3(0.5,0.1,0.3)); // noise from regular projection factor test below
|
|
Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI / 100, 0., -M_PI / 100),
|
|
Point3(0.1, 0.1, 0.1)); // smaller noise
|
|
Values values;
|
|
values.insert(x1, pose1);
|
|
values.insert(x2, pose2);
|
|
values.insert(x3, pose3 * noise_pose);
|
|
|
|
// All factors are disabled and pose should remain where it is
|
|
Values result;
|
|
LevenbergMarquardtOptimizer optimizer(graph, values, lm_params);
|
|
result = optimizer.optimize();
|
|
EXPECT(assert_equal(values.at<Pose3>(x3), result.at<Pose3>(x3)));
|
|
}
|
|
|
|
/* *************************************************************************/
|
|
TEST( SmartStereoProjectionPoseFactor, dynamicOutlierRejection ) {
|
|
|
|
vector<Key> views;
|
|
views.push_back(x1);
|
|
views.push_back(x2);
|
|
views.push_back(x3);
|
|
|
|
// create first camera. Looking along X-axis, 1 meter above ground plane (x-y)
|
|
Pose3 pose1 = Pose3(Rot3::Ypr(-M_PI / 2, 0., -M_PI / 2), Point3(0, 0, 1));
|
|
StereoCamera cam1(pose1, K);
|
|
// create second camera 1 meter to the right of first camera
|
|
Pose3 pose2 = pose1 * Pose3(Rot3(), Point3(1, 0, 0));
|
|
StereoCamera cam2(pose2, K);
|
|
// create third camera 1 meter above the first camera
|
|
Pose3 pose3 = pose1 * Pose3(Rot3(), Point3(0, -1, 0));
|
|
StereoCamera cam3(pose3, K);
|
|
|
|
// three landmarks ~5 meters infront of camera
|
|
Point3 landmark1(5, 0.5, 1.2);
|
|
Point3 landmark2(5, -0.5, 1.2);
|
|
Point3 landmark3(3, 0, 3.0);
|
|
Point3 landmark4(5, -0.5, 1);
|
|
|
|
// 1. Project four landmarks into three cameras and triangulate
|
|
vector<StereoPoint2> measurements_cam1 = stereo_projectToMultipleCameras(cam1,
|
|
cam2, cam3, landmark1);
|
|
vector<StereoPoint2> measurements_cam2 = stereo_projectToMultipleCameras(cam1,
|
|
cam2, cam3, landmark2);
|
|
vector<StereoPoint2> measurements_cam3 = stereo_projectToMultipleCameras(cam1,
|
|
cam2, cam3, landmark3);
|
|
vector<StereoPoint2> measurements_cam4 = stereo_projectToMultipleCameras(cam1,
|
|
cam2, cam3, landmark4);
|
|
|
|
measurements_cam4.at(0) = measurements_cam4.at(0) + StereoPoint2(10, 10, 1); // add outlier
|
|
|
|
SmartStereoProjectionParams params;
|
|
params.setLinearizationMode(JACOBIAN_SVD);
|
|
params.setDynamicOutlierRejectionThreshold(1);
|
|
|
|
|
|
SmartStereoProjectionPoseFactor::shared_ptr smartFactor1(new SmartStereoProjectionPoseFactor(model, params));
|
|
smartFactor1->add(measurements_cam1, views, K);
|
|
|
|
SmartStereoProjectionPoseFactor::shared_ptr smartFactor2(new SmartStereoProjectionPoseFactor(model, params));
|
|
smartFactor2->add(measurements_cam2, views, K);
|
|
|
|
SmartStereoProjectionPoseFactor::shared_ptr smartFactor3(new SmartStereoProjectionPoseFactor(model, params));
|
|
smartFactor3->add(measurements_cam3, views, K);
|
|
|
|
SmartStereoProjectionPoseFactor::shared_ptr smartFactor4(new SmartStereoProjectionPoseFactor(model, params));
|
|
smartFactor4->add(measurements_cam4, views, K);
|
|
|
|
// same as factor 4, but dynamic outlier rejection is off
|
|
SmartStereoProjectionPoseFactor::shared_ptr smartFactor4b(new SmartStereoProjectionPoseFactor(model));
|
|
smartFactor4b->add(measurements_cam4, views, K);
|
|
|
|
const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10);
|
|
|
|
NonlinearFactorGraph graph;
|
|
graph.push_back(smartFactor1);
|
|
graph.push_back(smartFactor2);
|
|
graph.push_back(smartFactor3);
|
|
graph.push_back(smartFactor4);
|
|
graph.push_back(PriorFactor<Pose3>(x1, pose1, noisePrior));
|
|
graph.push_back(PriorFactor<Pose3>(x2, pose2, noisePrior));
|
|
|
|
Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI / 100, 0., -M_PI / 100),
|
|
Point3(0.1, 0.1, 0.1)); // smaller noise
|
|
Values values;
|
|
values.insert(x1, pose1);
|
|
values.insert(x2, pose2);
|
|
values.insert(x3, pose3);
|
|
|
|
EXPECT_DOUBLES_EQUAL(0, smartFactor1->error(values), 1e-9);
|
|
EXPECT_DOUBLES_EQUAL(0, smartFactor2->error(values), 1e-9);
|
|
EXPECT_DOUBLES_EQUAL(0, smartFactor3->error(values), 1e-9);
|
|
// zero error due to dynamic outlier rejection
|
|
EXPECT_DOUBLES_EQUAL(0, smartFactor4->error(values), 1e-9);
|
|
|
|
// dynamic outlier rejection is off
|
|
EXPECT_DOUBLES_EQUAL(6700, smartFactor4b->error(values), 1e-9);
|
|
|
|
// Factors 1-3 should have valid point, factor 4 should not
|
|
EXPECT(smartFactor1->point());
|
|
EXPECT(smartFactor2->point());
|
|
EXPECT(smartFactor3->point());
|
|
EXPECT(smartFactor4->point().degenerate());
|
|
EXPECT(smartFactor4b->point());
|
|
|
|
// Factor 4 is disabled, pose 3 stays put
|
|
Values result;
|
|
LevenbergMarquardtOptimizer optimizer(graph, values, lm_params);
|
|
result = optimizer.optimize();
|
|
EXPECT(assert_equal(pose3, result.at<Pose3>(x3)));
|
|
}
|
|
//
|
|
///* *************************************************************************/
|
|
//TEST( SmartStereoProjectionPoseFactor, jacobianQ ){
|
|
//
|
|
// vector<Key> views;
|
|
// views.push_back(x1);
|
|
// views.push_back(x2);
|
|
// views.push_back(x3);
|
|
//
|
|
// // create first camera. Looking along X-axis, 1 meter above ground plane (x-y)
|
|
// Pose3 pose1 = Pose3(Rot3::Ypr(-M_PI/2, 0., -M_PI/2), Point3(0,0,1));
|
|
// StereoCamera cam1(pose1, K);
|
|
// // create second camera 1 meter to the right of first camera
|
|
// Pose3 pose2 = pose1 * Pose3(Rot3(), Point3(1,0,0));
|
|
// StereoCamera cam2(pose2, K);
|
|
// // create third camera 1 meter above the first camera
|
|
// Pose3 pose3 = pose1 * Pose3(Rot3(), Point3(0,-1,0));
|
|
// StereoCamera cam3(pose3, K);
|
|
//
|
|
// // three landmarks ~5 meters infront of camera
|
|
// Point3 landmark1(5, 0.5, 1.2);
|
|
// Point3 landmark2(5, -0.5, 1.2);
|
|
// Point3 landmark3(3, 0, 3.0);
|
|
//
|
|
// vector<StereoPoint2> measurements_cam1, measurements_cam2, measurements_cam3;
|
|
//
|
|
// // 1. Project three landmarks into three cameras and triangulate
|
|
// stereo_projectToMultipleCameras(cam1, cam2, cam3, landmark1, measurements_cam1);
|
|
// stereo_projectToMultipleCameras(cam1, cam2, cam3, landmark2, measurements_cam2);
|
|
// stereo_projectToMultipleCameras(cam1, cam2, cam3, landmark3, measurements_cam3);
|
|
//
|
|
// SmartStereoProjectionPoseFactor::shared_ptr smartFactor1(new SmartStereoProjectionPoseFactor(1, -1, false, false, JACOBIAN_Q));
|
|
// smartFactor1->add(measurements_cam1, views, model, K);
|
|
//
|
|
// SmartStereoProjectionPoseFactor::shared_ptr smartFactor2(new SmartStereoProjectionPoseFactor(1, -1, false, false, JACOBIAN_Q));
|
|
// smartFactor2->add(measurements_cam2, views, model, K);
|
|
//
|
|
// SmartStereoProjectionPoseFactor::shared_ptr smartFactor3(new SmartStereoProjectionPoseFactor(1, -1, false, false, JACOBIAN_Q));
|
|
// smartFactor3->add(measurements_cam3, views, model, K);
|
|
//
|
|
// const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10);
|
|
//
|
|
// NonlinearFactorGraph graph;
|
|
// graph.push_back(smartFactor1);
|
|
// graph.push_back(smartFactor2);
|
|
// graph.push_back(smartFactor3);
|
|
// graph.push_back(PriorFactor<Pose3>(x1, pose1, noisePrior));
|
|
// graph.push_back(PriorFactor<Pose3>(x2, pose2, noisePrior));
|
|
//
|
|
// // Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI/10, 0., -M_PI/10), Point3(0.5,0.1,0.3)); // noise from regular projection factor test below
|
|
// Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI/100, 0., -M_PI/100), Point3(0.1,0.1,0.1)); // smaller noise
|
|
// Values values;
|
|
// values.insert(x1, pose1);
|
|
// values.insert(x2, pose2);
|
|
// values.insert(x3, pose3*noise_pose);
|
|
//
|
|
//// Values result;
|
|
// LevenbergMarquardtOptimizer optimizer(graph, values, lm_params);
|
|
// result = optimizer.optimize();
|
|
// EXPECT(assert_equal(pose3,result.at<Pose3>(x3)));
|
|
//}
|
|
//
|
|
///* *************************************************************************/
|
|
//TEST( SmartStereoProjectionPoseFactor, 3poses_projection_factor ){
|
|
//
|
|
// vector<Key> views;
|
|
// views.push_back(x1);
|
|
// views.push_back(x2);
|
|
// views.push_back(x3);
|
|
//
|
|
// // create first camera. Looking along X-axis, 1 meter above ground plane (x-y)
|
|
// Pose3 pose1 = Pose3(Rot3::Ypr(-M_PI/2, 0., -M_PI/2), Point3(0,0,1));
|
|
// StereoCamera cam1(pose1, K2);
|
|
//
|
|
// // create second camera 1 meter to the right of first camera
|
|
// Pose3 pose2 = pose1 * Pose3(Rot3(), Point3(1,0,0));
|
|
// StereoCamera cam2(pose2, K2);
|
|
//
|
|
// // create third camera 1 meter above the first camera
|
|
// Pose3 pose3 = pose1 * Pose3(Rot3(), Point3(0,-1,0));
|
|
// StereoCamera cam3(pose3, K2);
|
|
//
|
|
// // three landmarks ~5 meters infront of camera
|
|
// Point3 landmark1(5, 0.5, 1.2);
|
|
// Point3 landmark2(5, -0.5, 1.2);
|
|
// Point3 landmark3(3, 0, 3.0);
|
|
//
|
|
// typedef GenericStereoFactor<Pose3, Point3> ProjectionFactor;
|
|
// NonlinearFactorGraph graph;
|
|
//
|
|
// // 1. Project three landmarks into three cameras and triangulate
|
|
// graph.push_back(ProjectionFactor(cam1.project(landmark1), model, x1, L(1), K2));
|
|
// graph.push_back(ProjectionFactor(cam2.project(landmark1), model, x2, L(1), K2));
|
|
// graph.push_back(ProjectionFactor(cam3.project(landmark1), model, x3, L(1), K2));
|
|
//
|
|
// graph.push_back(ProjectionFactor(cam1.project(landmark2), model, x1, L(2), K2));
|
|
// graph.push_back(ProjectionFactor(cam2.project(landmark2), model, x2, L(2), K2));
|
|
// graph.push_back(ProjectionFactor(cam3.project(landmark2), model, x3, L(2), K2));
|
|
//
|
|
// graph.push_back(ProjectionFactor(cam1.project(landmark3), model, x1, L(3), K2));
|
|
// graph.push_back(ProjectionFactor(cam2.project(landmark3), model, x2, L(3), K2));
|
|
// graph.push_back(ProjectionFactor(cam3.project(landmark3), model, x3, L(3), K2));
|
|
//
|
|
// const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10);
|
|
// graph.push_back(PriorFactor<Pose3>(x1, pose1, noisePrior));
|
|
// graph.push_back(PriorFactor<Pose3>(x2, pose2, noisePrior));
|
|
//
|
|
// Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI/10, 0., -M_PI/10), Point3(0.5,0.1,0.3));
|
|
// Values values;
|
|
// values.insert(x1, pose1);
|
|
// values.insert(x2, pose2);
|
|
// values.insert(x3, pose3* noise_pose);
|
|
// values.insert(L(1), landmark1);
|
|
// values.insert(L(2), landmark2);
|
|
// values.insert(L(3), landmark3);
|
|
//
|
|
// LevenbergMarquardtOptimizer optimizer(graph, values, lm_params);
|
|
// Values result = optimizer.optimize();
|
|
//
|
|
// EXPECT(assert_equal(pose3,result.at<Pose3>(x3)));
|
|
//}
|
|
//
|
|
/* *************************************************************************/
|
|
TEST( SmartStereoProjectionPoseFactor, CheckHessian) {
|
|
|
|
vector<Key> views;
|
|
views.push_back(x1);
|
|
views.push_back(x2);
|
|
views.push_back(x3);
|
|
|
|
// create first camera. Looking along X-axis, 1 meter above ground plane (x-y)
|
|
Pose3 pose1 = Pose3(Rot3::Ypr(-M_PI / 2, 0., -M_PI / 2), Point3(0, 0, 1));
|
|
StereoCamera cam1(pose1, K);
|
|
|
|
// create second camera
|
|
Pose3 pose2 = pose1 * Pose3(Rot3::RzRyRx(-0.05, 0.0, -0.05), Point3(0, 0, 0));
|
|
StereoCamera cam2(pose2, K);
|
|
|
|
// create third camera
|
|
Pose3 pose3 = pose2 * Pose3(Rot3::RzRyRx(-0.05, 0.0, -0.05), Point3(0, 0, 0));
|
|
StereoCamera cam3(pose3, K);
|
|
|
|
// three landmarks ~5 meters infront of camera
|
|
Point3 landmark1(5, 0.5, 1.2);
|
|
Point3 landmark2(5, -0.5, 1.2);
|
|
Point3 landmark3(3, 0, 3.0);
|
|
|
|
// Project three landmarks into three cameras and triangulate
|
|
vector<StereoPoint2> measurements_cam1 = stereo_projectToMultipleCameras(cam1,
|
|
cam2, cam3, landmark1);
|
|
vector<StereoPoint2> measurements_cam2 = stereo_projectToMultipleCameras(cam1,
|
|
cam2, cam3, landmark2);
|
|
vector<StereoPoint2> measurements_cam3 = stereo_projectToMultipleCameras(cam1,
|
|
cam2, cam3, landmark3);
|
|
|
|
SmartStereoProjectionParams params;
|
|
params.setRankTolerance(10);
|
|
|
|
SmartStereoProjectionPoseFactor::shared_ptr smartFactor1(new SmartStereoProjectionPoseFactor(model, params));
|
|
smartFactor1->add(measurements_cam1, views, K);
|
|
|
|
SmartStereoProjectionPoseFactor::shared_ptr smartFactor2(new SmartStereoProjectionPoseFactor(model, params));
|
|
smartFactor2->add(measurements_cam2, views, K);
|
|
|
|
SmartStereoProjectionPoseFactor::shared_ptr smartFactor3(new SmartStereoProjectionPoseFactor(model, params));
|
|
smartFactor3->add(measurements_cam3, views, K);
|
|
|
|
// Create graph to optimize
|
|
NonlinearFactorGraph graph;
|
|
graph.push_back(smartFactor1);
|
|
graph.push_back(smartFactor2);
|
|
graph.push_back(smartFactor3);
|
|
|
|
Values values;
|
|
values.insert(x1, pose1);
|
|
values.insert(x2, pose2);
|
|
// initialize third pose with some noise, we expect it to move back to original pose3
|
|
Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI / 100, 0., -M_PI / 100),
|
|
Point3(0.1, 0.1, 0.1)); // smaller noise
|
|
values.insert(x3, pose3 * noise_pose);
|
|
|
|
// TODO: next line throws Cheirality exception on Mac
|
|
boost::shared_ptr<GaussianFactor> hessianFactor1 = smartFactor1->linearize(
|
|
values);
|
|
boost::shared_ptr<GaussianFactor> hessianFactor2 = smartFactor2->linearize(
|
|
values);
|
|
boost::shared_ptr<GaussianFactor> hessianFactor3 = smartFactor3->linearize(
|
|
values);
|
|
|
|
Matrix CumulativeInformation = hessianFactor1->information()
|
|
+ hessianFactor2->information() + hessianFactor3->information();
|
|
|
|
boost::shared_ptr<GaussianFactorGraph> GaussianGraph = graph.linearize(
|
|
values);
|
|
Matrix GraphInformation = GaussianGraph->hessian().first;
|
|
|
|
// Check Hessian
|
|
EXPECT(assert_equal(GraphInformation, CumulativeInformation, 1e-8));
|
|
|
|
Matrix AugInformationMatrix = hessianFactor1->augmentedInformation()
|
|
+ hessianFactor2->augmentedInformation()
|
|
+ hessianFactor3->augmentedInformation();
|
|
|
|
// Check Information vector
|
|
Vector InfoVector = AugInformationMatrix.block(0, 18, 18, 1); // 18x18 Hessian + information vector
|
|
|
|
// Check Hessian
|
|
EXPECT(assert_equal(InfoVector, GaussianGraph->hessian().second, 1e-8));
|
|
}
|
|
//
|
|
///* *************************************************************************/
|
|
//TEST( SmartStereoProjectionPoseFactor, 3poses_2land_rotation_only_smart_projection_factor ){
|
|
//
|
|
// vector<Key> views;
|
|
// views.push_back(x1);
|
|
// views.push_back(x2);
|
|
// views.push_back(x3);
|
|
//
|
|
// // create first camera. Looking along X-axis, 1 meter above ground plane (x-y)
|
|
// Pose3 pose1 = Pose3(Rot3::Ypr(-M_PI/2, 0., -M_PI/2), Point3(0,0,1));
|
|
// StereoCamera cam1(pose1, K2);
|
|
//
|
|
// // create second camera 1 meter to the right of first camera
|
|
// Pose3 pose2 = pose1 * Pose3(Rot3::RzRyRx(-0.05, 0.0, -0.05), Point3(0,0,0));
|
|
// StereoCamera cam2(pose2, K2);
|
|
//
|
|
// // create third camera 1 meter above the first camera
|
|
// Pose3 pose3 = pose2 * Pose3(Rot3::RzRyRx(-0.05, 0.0, -0.05), Point3(0,0,0));
|
|
// StereoCamera cam3(pose3, K2);
|
|
//
|
|
// // three landmarks ~5 meters infront of camera
|
|
// Point3 landmark1(5, 0.5, 1.2);
|
|
// Point3 landmark2(5, -0.5, 1.2);
|
|
//
|
|
// vector<StereoPoint2> measurements_cam1, measurements_cam2, measurements_cam3;
|
|
//
|
|
// // 1. Project three landmarks into three cameras and triangulate
|
|
// stereo_projectToMultipleCameras(cam1, cam2, cam3, landmark1, measurements_cam1);
|
|
// stereo_projectToMultipleCameras(cam1, cam2, cam3, landmark2, measurements_cam2);
|
|
//
|
|
// double rankTol = 50;
|
|
// SmartStereoProjectionPoseFactor::shared_ptr smartFactor1(new SmartStereoProjectionPoseFactor(rankTol, linThreshold, manageDegeneracy));
|
|
// smartFactor1->add(measurements_cam1, views, model, K2);
|
|
//
|
|
// SmartStereoProjectionPoseFactor::shared_ptr smartFactor2(new SmartStereoProjectionPoseFactor(rankTol, linThreshold, manageDegeneracy));
|
|
// smartFactor2->add(measurements_cam2, views, model, K2);
|
|
//
|
|
// const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10);
|
|
// const SharedDiagonal noisePriorTranslation = noiseModel::Isotropic::Sigma(3, 0.10);
|
|
// Point3 positionPrior = Point3(0,0,1);
|
|
//
|
|
// NonlinearFactorGraph graph;
|
|
// graph.push_back(smartFactor1);
|
|
// graph.push_back(smartFactor2);
|
|
// graph.push_back(PriorFactor<Pose3>(x1, pose1, noisePrior));
|
|
// graph.push_back(PoseTranslationPrior<Pose3>(x2, positionPrior, noisePriorTranslation));
|
|
// graph.push_back(PoseTranslationPrior<Pose3>(x3, positionPrior, noisePriorTranslation));
|
|
//
|
|
// Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI/10, 0., -M_PI/10), Point3(0.1,0.1,0.1)); // smaller noise
|
|
// Values values;
|
|
// values.insert(x1, pose1);
|
|
// values.insert(x2, pose2*noise_pose);
|
|
// // initialize third pose with some noise, we expect it to move back to original pose3
|
|
// values.insert(x3, pose3*noise_pose*noise_pose);
|
|
//
|
|
// Values result;
|
|
// gttic_(SmartStereoProjectionPoseFactor);
|
|
// LevenbergMarquardtOptimizer optimizer(graph, values, lm_params);
|
|
// result = optimizer.optimize();
|
|
// gttoc_(SmartStereoProjectionPoseFactor);
|
|
// tictoc_finishedIteration_();
|
|
//
|
|
// // result.print("results of 3 camera, 3 landmark optimization \n");
|
|
// // EXPECT(assert_equal(pose3,result.at<Pose3>(x3)));
|
|
//}
|
|
//
|
|
///* *************************************************************************/
|
|
//TEST( SmartStereoProjectionPoseFactor, 3poses_rotation_only_smart_projection_factor ){
|
|
//
|
|
// vector<Key> views;
|
|
// views.push_back(x1);
|
|
// views.push_back(x2);
|
|
// views.push_back(x3);
|
|
//
|
|
// // create first camera. Looking along X-axis, 1 meter above ground plane (x-y)
|
|
// Pose3 pose1 = Pose3(Rot3::Ypr(-M_PI/2, 0., -M_PI/2), Point3(0,0,1));
|
|
// StereoCamera cam1(pose1, K);
|
|
//
|
|
// // create second camera 1 meter to the right of first camera
|
|
// Pose3 pose2 = pose1 * Pose3(Rot3::RzRyRx(-0.05, 0.0, -0.05), Point3(0,0,0));
|
|
// StereoCamera cam2(pose2, K);
|
|
//
|
|
// // create third camera 1 meter above the first camera
|
|
// Pose3 pose3 = pose2 * Pose3(Rot3::RzRyRx(-0.05, 0.0, -0.05), Point3(0,0,0));
|
|
// StereoCamera cam3(pose3, K);
|
|
//
|
|
// // three landmarks ~5 meters infront of camera
|
|
// Point3 landmark1(5, 0.5, 1.2);
|
|
// Point3 landmark2(5, -0.5, 1.2);
|
|
// Point3 landmark3(3, 0, 3.0);
|
|
//
|
|
// vector<StereoPoint2> measurements_cam1, measurements_cam2, measurements_cam3;
|
|
//
|
|
// // 1. Project three landmarks into three cameras and triangulate
|
|
// stereo_projectToMultipleCameras(cam1, cam2, cam3, landmark1, measurements_cam1);
|
|
// stereo_projectToMultipleCameras(cam1, cam2, cam3, landmark2, measurements_cam2);
|
|
// stereo_projectToMultipleCameras(cam1, cam2, cam3, landmark3, measurements_cam3);
|
|
//
|
|
// double rankTol = 10;
|
|
//
|
|
// SmartStereoProjectionPoseFactor::shared_ptr smartFactor1(new SmartStereoProjectionPoseFactor(rankTol, linThreshold, manageDegeneracy));
|
|
// smartFactor1->add(measurements_cam1, views, model, K);
|
|
//
|
|
// SmartStereoProjectionPoseFactor::shared_ptr smartFactor2(new SmartStereoProjectionPoseFactor(rankTol, linThreshold, manageDegeneracy));
|
|
// smartFactor2->add(measurements_cam2, views, model, K);
|
|
//
|
|
// SmartStereoProjectionPoseFactor::shared_ptr smartFactor3(new SmartStereoProjectionPoseFactor(rankTol, linThreshold, manageDegeneracy));
|
|
// smartFactor3->add(measurements_cam3, views, model, K);
|
|
//
|
|
// const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10);
|
|
// const SharedDiagonal noisePriorTranslation = noiseModel::Isotropic::Sigma(3, 0.10);
|
|
// Point3 positionPrior = Point3(0,0,1);
|
|
//
|
|
// NonlinearFactorGraph graph;
|
|
// graph.push_back(smartFactor1);
|
|
// graph.push_back(smartFactor2);
|
|
// graph.push_back(smartFactor3);
|
|
// graph.push_back(PriorFactor<Pose3>(x1, pose1, noisePrior));
|
|
// graph.push_back(PoseTranslationPrior<Pose3>(x2, positionPrior, noisePriorTranslation));
|
|
// graph.push_back(PoseTranslationPrior<Pose3>(x3, positionPrior, noisePriorTranslation));
|
|
//
|
|
// // Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI/10, 0., -M_PI/10), Point3(0.5,0.1,0.3)); // noise from regular projection factor test below
|
|
// Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI/100, 0., -M_PI/100), Point3(0.1,0.1,0.1)); // smaller noise
|
|
// Values values;
|
|
// values.insert(x1, pose1);
|
|
// values.insert(x2, pose2);
|
|
// // initialize third pose with some noise, we expect it to move back to original pose3
|
|
// values.insert(x3, pose3*noise_pose);
|
|
//
|
|
// Values result;
|
|
// gttic_(SmartStereoProjectionPoseFactor);
|
|
// LevenbergMarquardtOptimizer optimizer(graph, values, lm_params);
|
|
// result = optimizer.optimize();
|
|
// gttoc_(SmartStereoProjectionPoseFactor);
|
|
// tictoc_finishedIteration_();
|
|
//
|
|
// // result.print("results of 3 camera, 3 landmark optimization \n");
|
|
// // EXPECT(assert_equal(pose3,result.at<Pose3>(x3)));
|
|
//}
|
|
//
|
|
///* *************************************************************************/
|
|
//TEST( SmartStereoProjectionPoseFactor, Hessian ){
|
|
//
|
|
// vector<Key> views;
|
|
// views.push_back(x1);
|
|
// views.push_back(x2);
|
|
//
|
|
// // create first camera. Looking along X-axis, 1 meter above ground plane (x-y)
|
|
// Pose3 pose1 = Pose3(Rot3::Ypr(-M_PI/2, 0., -M_PI/2), Point3(0,0,1));
|
|
// StereoCamera cam1(pose1, K2);
|
|
//
|
|
// // create second camera 1 meter to the right of first camera
|
|
// Pose3 pose2 = pose1 * Pose3(Rot3(), Point3(1,0,0));
|
|
// StereoCamera cam2(pose2, K2);
|
|
//
|
|
// // three landmarks ~5 meters infront of camera
|
|
// Point3 landmark1(5, 0.5, 1.2);
|
|
//
|
|
// // 1. Project three landmarks into three cameras and triangulate
|
|
// StereoPoint2 cam1_uv1 = cam1.project(landmark1);
|
|
// StereoPoint2 cam2_uv1 = cam2.project(landmark1);
|
|
// vector<StereoPoint2> measurements_cam1;
|
|
// measurements_cam1.push_back(cam1_uv1);
|
|
// measurements_cam1.push_back(cam2_uv1);
|
|
//
|
|
// SmartStereoProjectionPoseFactor::shared_ptr smartFactor1(new SmartStereoProjectionPoseFactor());
|
|
// smartFactor1->add(measurements_cam1,views, model, K2);
|
|
//
|
|
// Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI/10, 0., -M_PI/10), Point3(0.5,0.1,0.3));
|
|
// Values values;
|
|
// values.insert(x1, pose1);
|
|
// values.insert(x2, pose2);
|
|
//
|
|
// boost::shared_ptr<GaussianFactor> hessianFactor = smartFactor1->linearize(values);
|
|
//
|
|
// // compute triangulation from linearization point
|
|
// // compute reprojection errors (sum squared)
|
|
// // compare with hessianFactor.info(): the bottom right element is the squared sum of the reprojection errors (normalized by the covariance)
|
|
// // check that it is correctly scaled when using noiseProjection = [1/4 0; 0 1/4]
|
|
//}
|
|
//
|
|
|
|
/* *************************************************************************/
|
|
TEST( SmartStereoProjectionPoseFactor, HessianWithRotation ) {
|
|
vector<Key> views;
|
|
views.push_back(x1);
|
|
views.push_back(x2);
|
|
views.push_back(x3);
|
|
|
|
// create first camera. Looking along X-axis, 1 meter above ground plane (x-y)
|
|
Pose3 pose1 = Pose3(Rot3::Ypr(-M_PI / 2, 0., -M_PI / 2), Point3(0, 0, 1));
|
|
StereoCamera cam1(pose1, K);
|
|
|
|
// create second camera 1 meter to the right of first camera
|
|
Pose3 pose2 = pose1 * Pose3(Rot3(), Point3(1, 0, 0));
|
|
StereoCamera cam2(pose2, K);
|
|
|
|
// create third camera 1 meter above the first camera
|
|
Pose3 pose3 = pose1 * Pose3(Rot3(), Point3(0, -1, 0));
|
|
StereoCamera cam3(pose3, K);
|
|
|
|
Point3 landmark1(5, 0.5, 1.2);
|
|
|
|
vector<StereoPoint2> measurements_cam1 = stereo_projectToMultipleCameras(cam1,
|
|
cam2, cam3, landmark1);
|
|
|
|
SmartStereoProjectionPoseFactor::shared_ptr smartFactorInstance(new SmartStereoProjectionPoseFactor(model));
|
|
smartFactorInstance->add(measurements_cam1, views, K);
|
|
|
|
Values values;
|
|
values.insert(x1, pose1);
|
|
values.insert(x2, pose2);
|
|
values.insert(x3, pose3);
|
|
|
|
boost::shared_ptr<GaussianFactor> hessianFactor =
|
|
smartFactorInstance->linearize(values);
|
|
// hessianFactor->print("Hessian factor \n");
|
|
|
|
Pose3 poseDrift = Pose3(Rot3::Ypr(-M_PI / 2, 0., -M_PI / 2), Point3(0, 0, 0));
|
|
|
|
Values rotValues;
|
|
rotValues.insert(x1, poseDrift.compose(pose1));
|
|
rotValues.insert(x2, poseDrift.compose(pose2));
|
|
rotValues.insert(x3, poseDrift.compose(pose3));
|
|
|
|
boost::shared_ptr<GaussianFactor> hessianFactorRot =
|
|
smartFactorInstance->linearize(rotValues);
|
|
// hessianFactorRot->print("Hessian factor \n");
|
|
|
|
// Hessian is invariant to rotations in the nondegenerate case
|
|
EXPECT(
|
|
assert_equal(hessianFactor->information(),
|
|
hessianFactorRot->information(), 1e-7));
|
|
|
|
Pose3 poseDrift2 = Pose3(Rot3::Ypr(-M_PI / 2, -M_PI / 3, -M_PI / 2),
|
|
Point3(10, -4, 5));
|
|
|
|
Values tranValues;
|
|
tranValues.insert(x1, poseDrift2.compose(pose1));
|
|
tranValues.insert(x2, poseDrift2.compose(pose2));
|
|
tranValues.insert(x3, poseDrift2.compose(pose3));
|
|
|
|
boost::shared_ptr<GaussianFactor> hessianFactorRotTran =
|
|
smartFactorInstance->linearize(tranValues);
|
|
|
|
// Hessian is invariant to rotations and translations in the nondegenerate case
|
|
EXPECT(
|
|
assert_equal(hessianFactor->information(),
|
|
hessianFactorRotTran->information(), 1e-6));
|
|
}
|
|
|
|
/* *************************************************************************/
|
|
TEST( SmartStereoProjectionPoseFactor, HessianWithRotationDegenerate ) {
|
|
|
|
vector<Key> views;
|
|
views.push_back(x1);
|
|
views.push_back(x2);
|
|
views.push_back(x3);
|
|
|
|
// create first camera. Looking along X-axis, 1 meter above ground plane (x-y)
|
|
Pose3 pose1 = Pose3(Rot3::Ypr(-M_PI / 2, 0., -M_PI / 2), Point3(0, 0, 1));
|
|
StereoCamera cam1(pose1, K2);
|
|
|
|
// Second and third cameras in same place, which is a degenerate configuration
|
|
Pose3 pose2 = pose1;
|
|
Pose3 pose3 = pose1;
|
|
StereoCamera cam2(pose2, K2);
|
|
StereoCamera cam3(pose3, K2);
|
|
|
|
Point3 landmark1(5, 0.5, 1.2);
|
|
|
|
vector<StereoPoint2> measurements_cam1 = stereo_projectToMultipleCameras(cam1,
|
|
cam2, cam3, landmark1);
|
|
|
|
SmartStereoProjectionPoseFactor::shared_ptr smartFactor(new SmartStereoProjectionPoseFactor(model));
|
|
smartFactor->add(measurements_cam1, views, K2);
|
|
|
|
Values values;
|
|
values.insert(x1, pose1);
|
|
values.insert(x2, pose2);
|
|
values.insert(x3, pose3);
|
|
|
|
boost::shared_ptr<GaussianFactor> hessianFactor = smartFactor->linearize(
|
|
values);
|
|
|
|
Pose3 poseDrift = Pose3(Rot3::Ypr(-M_PI / 2, 0., -M_PI / 2), Point3(0, 0, 0));
|
|
|
|
Values rotValues;
|
|
rotValues.insert(x1, poseDrift.compose(pose1));
|
|
rotValues.insert(x2, poseDrift.compose(pose2));
|
|
rotValues.insert(x3, poseDrift.compose(pose3));
|
|
|
|
boost::shared_ptr<GaussianFactor> hessianFactorRot = smartFactor->linearize(
|
|
rotValues);
|
|
|
|
// Hessian is invariant to rotations in the nondegenerate case
|
|
EXPECT(
|
|
assert_equal(hessianFactor->information(),
|
|
hessianFactorRot->information(), 1e-6));
|
|
|
|
Pose3 poseDrift2 = Pose3(Rot3::Ypr(-M_PI / 2, -M_PI / 3, -M_PI / 2),
|
|
Point3(10, -4, 5));
|
|
|
|
Values tranValues;
|
|
tranValues.insert(x1, poseDrift2.compose(pose1));
|
|
tranValues.insert(x2, poseDrift2.compose(pose2));
|
|
tranValues.insert(x3, poseDrift2.compose(pose3));
|
|
|
|
boost::shared_ptr<GaussianFactor> hessianFactorRotTran =
|
|
smartFactor->linearize(tranValues);
|
|
|
|
// Hessian is invariant to rotations and translations in the nondegenerate case
|
|
EXPECT(
|
|
assert_equal(hessianFactor->information(),
|
|
hessianFactorRotTran->information(), 1e-6));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
int main() {
|
|
TestResult tr;
|
|
return TestRegistry::runAllTests(tr);
|
|
}
|
|
/* ************************************************************************* */
|
|
|