gtsam/gtsam_unstable/slam/tests/testInvDepthFactorVariant3.cpp

86 lines
3.4 KiB
C++

/*
* testInvDepthFactorVariant3.cpp
*
* Created on: Apr 13, 2012
* Author: cbeall3
*/
#include <CppUnitLite/TestHarness.h>
#include <gtsam_unstable/slam/InvDepthFactorVariant3.h>
#include <gtsam/nonlinear/NonlinearEquality.h>
#include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h>
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
#include <gtsam/inference/Symbol.h>
#include <gtsam/geometry/PinholeCamera.h>
#include <gtsam/geometry/Cal3_S2.h>
#include <gtsam/geometry/Pose3.h>
#include <gtsam/geometry/Point3.h>
#include <gtsam/geometry/Point2.h>
using namespace std;
using namespace gtsam;
/* ************************************************************************* */
TEST( InvDepthFactorVariant3, optimize) {
// Create two poses looking in the x-direction
Pose3 pose1(Rot3::Ypr(-M_PI/2, 0., -M_PI/2), gtsam::Point3(0,0,1.0));
Pose3 pose2(Rot3::Ypr(-M_PI/2, 0., -M_PI/2), gtsam::Point3(0,0,1.5));
// Create a landmark 5 meters in front of pose1 (camera center at (0,0,1))
Point3 landmark(5, 0, 1);
// Create image observations
Cal3_S2::shared_ptr K(new Cal3_S2(1500, 1200, 0, 640, 480));
PinholeCamera<Cal3_S2> camera1(pose1, *K);
PinholeCamera<Cal3_S2> camera2(pose2, *K);
Point2 pixel1 = camera1.project(landmark);
Point2 pixel2 = camera2.project(landmark);
// Create expected landmark
Point3 landmark_p1 = pose1.transform_to(landmark);
// landmark_p1.print("Landmark in Pose1 Frame:\n");
double theta = atan2(landmark_p1.x(), landmark_p1.z());
double phi = atan2(landmark_p1.y(), sqrt(landmark_p1.x()*landmark_p1.x()+landmark_p1.z()*landmark_p1.z()));
double rho = 1./landmark_p1.norm();
Vector3 expected((Vector(3) << theta, phi, rho).finished());
// Create a factor graph with two inverse depth factors and two pose priors
Key poseKey1(1);
Key poseKey2(2);
Key landmarkKey(100);
SharedNoiseModel sigma(noiseModel::Unit::Create(2));
NonlinearFactor::shared_ptr factor1(new NonlinearEquality<Pose3>(poseKey1, pose1, 100000));
NonlinearFactor::shared_ptr factor2(new NonlinearEquality<Pose3>(poseKey2, pose2, 100000));
NonlinearFactor::shared_ptr factor3(new InvDepthFactorVariant3a(poseKey1, landmarkKey, pixel1, K, sigma));
NonlinearFactor::shared_ptr factor4(new InvDepthFactorVariant3b(poseKey1, poseKey2, landmarkKey, pixel2, K, sigma));
NonlinearFactorGraph graph;
graph.push_back(factor1);
graph.push_back(factor2);
graph.push_back(factor3);
graph.push_back(factor4);
// Create a values with slightly incorrect initial conditions
Values values;
values.insert(poseKey1, pose1.retract((Vector(6) << +0.01, -0.02, +0.03, -0.10, +0.20, -0.30).finished()));
values.insert(poseKey2, pose2.retract((Vector(6) << +0.01, +0.02, -0.03, -0.10, +0.20, +0.30).finished()));
values.insert(landmarkKey, Vector3(expected + Vector3(+0.02, -0.04, +0.05)));
// Optimize the graph to recover the actual landmark position
LevenbergMarquardtParams params;
Values result = LevenbergMarquardtOptimizer(graph, values, params).optimize();
Vector3 actual = result.at<Vector3>(landmarkKey);
// Test that the correct landmark parameters have been recovered
EXPECT(assert_equal((Vector)expected, actual, 1e-9));
}
/* ************************************************************************* */
int main() { TestResult tr; return TestRegistry::runAllTests(tr);}
/* ************************************************************************* */