gtsam/gtsam/geometry/tests/testTriangulation.cpp

388 lines
13 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* testTriangulation.cpp
*
* Created on: July 30th, 2013
* Author: cbeall3
*/
#include <gtsam/geometry/triangulation.h>
#include <gtsam/geometry/SimpleCamera.h>
#include <gtsam/geometry/StereoCamera.h>
#include <gtsam/geometry/CameraSet.h>
#include <gtsam/geometry/Cal3Bundler.h>
#include <gtsam/slam/StereoFactor.h>
#include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h>
#include <gtsam/nonlinear/ExpressionFactor.h>
#include <CppUnitLite/TestHarness.h>
#include <boost/assign.hpp>
#include <boost/assign/std/vector.hpp>
using namespace std;
using namespace gtsam;
using namespace boost::assign;
// Some common constants
static const boost::shared_ptr<Cal3_S2> sharedCal = //
boost::make_shared<Cal3_S2>(1500, 1200, 0, 640, 480);
// Looking along X-axis, 1 meter above ground plane (x-y)
static const Rot3 upright = Rot3::Ypr(-M_PI / 2, 0., -M_PI / 2);
static const Pose3 pose1 = Pose3(upright, gtsam::Point3(0, 0, 1));
PinholeCamera<Cal3_S2> camera1(pose1, *sharedCal);
// create second camera 1 meter to the right of first camera
static const Pose3 pose2 = pose1 * Pose3(Rot3(), Point3(1, 0, 0));
PinholeCamera<Cal3_S2> camera2(pose2, *sharedCal);
// landmark ~5 meters infront of camera
static const Point3 landmark(5, 0.5, 1.2);
// 1. Project two landmarks into two cameras and triangulate
Point2 z1 = camera1.project(landmark);
Point2 z2 = camera2.project(landmark);
//******************************************************************************
// Simple test with a well-behaved two camera situation
TEST( triangulation, twoPoses) {
vector<Pose3> poses;
vector<Point2> measurements;
poses += pose1, pose2;
measurements += z1, z2;
double rank_tol = 1e-9;
// 1. Test simple DLT, perfect in no noise situation
bool optimize = false;
boost::optional<Point3> actual1 = //
triangulatePoint3(poses, sharedCal, measurements, rank_tol, optimize);
EXPECT(assert_equal(landmark, *actual1, 1e-7));
// 2. test with optimization on, same answer
optimize = true;
boost::optional<Point3> actual2 = //
triangulatePoint3(poses, sharedCal, measurements, rank_tol, optimize);
EXPECT(assert_equal(landmark, *actual2, 1e-7));
// 3. Add some noise and try again: result should be ~ (4.995, 0.499167, 1.19814)
measurements.at(0) += Point2(0.1, 0.5);
measurements.at(1) += Point2(-0.2, 0.3);
optimize = false;
boost::optional<Point3> actual3 = //
triangulatePoint3(poses, sharedCal, measurements, rank_tol, optimize);
EXPECT(assert_equal(Point3(4.995, 0.499167, 1.19814), *actual3, 1e-4));
// 4. Now with optimization on
optimize = true;
boost::optional<Point3> actual4 = //
triangulatePoint3(poses, sharedCal, measurements, rank_tol, optimize);
EXPECT(assert_equal(Point3(4.995, 0.499167, 1.19814), *actual4, 1e-4));
}
//******************************************************************************
// Similar, but now with Bundler calibration
TEST( triangulation, twoPosesBundler) {
boost::shared_ptr<Cal3Bundler> bundlerCal = //
boost::make_shared<Cal3Bundler>(1500, 0, 0, 640, 480);
PinholeCamera<Cal3Bundler> camera1(pose1, *bundlerCal);
PinholeCamera<Cal3Bundler> camera2(pose2, *bundlerCal);
// 1. Project two landmarks into two cameras and triangulate
Point2 z1 = camera1.project(landmark);
Point2 z2 = camera2.project(landmark);
vector<Pose3> poses;
vector<Point2> measurements;
poses += pose1, pose2;
measurements += z1, z2;
bool optimize = true;
double rank_tol = 1e-9;
boost::optional<Point3> actual = //
triangulatePoint3(poses, bundlerCal, measurements, rank_tol, optimize);
EXPECT(assert_equal(landmark, *actual, 1e-7));
// Add some noise and try again
measurements.at(0) += Point2(0.1, 0.5);
measurements.at(1) += Point2(-0.2, 0.3);
boost::optional<Point3> actual2 = //
triangulatePoint3(poses, bundlerCal, measurements, rank_tol, optimize);
EXPECT(assert_equal(Point3(4.995, 0.499167, 1.19847), *actual2, 1e-4));
}
//******************************************************************************
TEST( triangulation, fourPoses) {
vector<Pose3> poses;
vector<Point2> measurements;
poses += pose1, pose2;
measurements += z1, z2;
boost::optional<Point3> actual = triangulatePoint3(poses, sharedCal,
measurements);
EXPECT(assert_equal(landmark, *actual, 1e-2));
// 2. Add some noise and try again: result should be ~ (4.995, 0.499167, 1.19814)
measurements.at(0) += Point2(0.1, 0.5);
measurements.at(1) += Point2(-0.2, 0.3);
boost::optional<Point3> actual2 = //
triangulatePoint3(poses, sharedCal, measurements);
EXPECT(assert_equal(landmark, *actual2, 1e-2));
// 3. Add a slightly rotated third camera above, again with measurement noise
Pose3 pose3 = pose1 * Pose3(Rot3::Ypr(0.1, 0.2, 0.1), Point3(0.1, -2, -.1));
SimpleCamera camera3(pose3, *sharedCal);
Point2 z3 = camera3.project(landmark);
poses += pose3;
measurements += z3 + Point2(0.1, -0.1);
boost::optional<Point3> triangulated_3cameras = //
triangulatePoint3(poses, sharedCal, measurements);
EXPECT(assert_equal(landmark, *triangulated_3cameras, 1e-2));
// Again with nonlinear optimization
boost::optional<Point3> triangulated_3cameras_opt = triangulatePoint3(poses,
sharedCal, measurements, 1e-9, true);
EXPECT(assert_equal(landmark, *triangulated_3cameras_opt, 1e-2));
// 4. Test failure: Add a 4th camera facing the wrong way
Pose3 pose4 = Pose3(Rot3::Ypr(M_PI / 2, 0., -M_PI / 2), Point3(0, 0, 1));
SimpleCamera camera4(pose4, *sharedCal);
#ifdef GTSAM_THROW_CHEIRALITY_EXCEPTION
CHECK_EXCEPTION(camera4.project(landmark), CheiralityException);
poses += pose4;
measurements += Point2(400, 400);
CHECK_EXCEPTION(triangulatePoint3(poses, sharedCal, measurements),
TriangulationCheiralityException);
#endif
}
//******************************************************************************
TEST( triangulation, fourPoses_distinct_Ks) {
Cal3_S2 K1(1500, 1200, 0, 640, 480);
// create first camera. Looking along X-axis, 1 meter above ground plane (x-y)
SimpleCamera camera1(pose1, K1);
// create second camera 1 meter to the right of first camera
Cal3_S2 K2(1600, 1300, 0, 650, 440);
SimpleCamera camera2(pose2, K2);
// 1. Project two landmarks into two cameras and triangulate
Point2 z1 = camera1.project(landmark);
Point2 z2 = camera2.project(landmark);
vector<SimpleCamera> cameras;
vector<Point2> measurements;
cameras += camera1, camera2;
measurements += z1, z2;
boost::optional<Point3> actual = //
triangulatePoint3(cameras, measurements);
EXPECT(assert_equal(landmark, *actual, 1e-2));
// 2. Add some noise and try again: result should be ~ (4.995, 0.499167, 1.19814)
measurements.at(0) += Point2(0.1, 0.5);
measurements.at(1) += Point2(-0.2, 0.3);
boost::optional<Point3> actual2 = //
triangulatePoint3(cameras, measurements);
EXPECT(assert_equal(landmark, *actual2, 1e-2));
// 3. Add a slightly rotated third camera above, again with measurement noise
Pose3 pose3 = pose1 * Pose3(Rot3::Ypr(0.1, 0.2, 0.1), Point3(0.1, -2, -.1));
Cal3_S2 K3(700, 500, 0, 640, 480);
SimpleCamera camera3(pose3, K3);
Point2 z3 = camera3.project(landmark);
cameras += camera3;
measurements += z3 + Point2(0.1, -0.1);
boost::optional<Point3> triangulated_3cameras = //
triangulatePoint3(cameras, measurements);
EXPECT(assert_equal(landmark, *triangulated_3cameras, 1e-2));
// Again with nonlinear optimization
boost::optional<Point3> triangulated_3cameras_opt = triangulatePoint3(cameras,
measurements, 1e-9, true);
EXPECT(assert_equal(landmark, *triangulated_3cameras_opt, 1e-2));
// 4. Test failure: Add a 4th camera facing the wrong way
Pose3 pose4 = Pose3(Rot3::Ypr(M_PI / 2, 0., -M_PI / 2), Point3(0, 0, 1));
Cal3_S2 K4(700, 500, 0, 640, 480);
SimpleCamera camera4(pose4, K4);
#ifdef GTSAM_THROW_CHEIRALITY_EXCEPTION
CHECK_EXCEPTION(camera4.project(landmark), CheiralityException);
cameras += camera4;
measurements += Point2(400, 400);
CHECK_EXCEPTION(triangulatePoint3(cameras, measurements),
TriangulationCheiralityException);
#endif
}
//******************************************************************************
TEST( triangulation, twoIdenticalPoses) {
// create first camera. Looking along X-axis, 1 meter above ground plane (x-y)
SimpleCamera camera1(pose1, *sharedCal);
// 1. Project two landmarks into two cameras and triangulate
Point2 z1 = camera1.project(landmark);
vector<Pose3> poses;
vector<Point2> measurements;
poses += pose1, pose1;
measurements += z1, z1;
CHECK_EXCEPTION(triangulatePoint3(poses, sharedCal, measurements),
TriangulationUnderconstrainedException);
}
//******************************************************************************
TEST( triangulation, onePose) {
// we expect this test to fail with a TriangulationUnderconstrainedException
// because there's only one camera observation
vector<Pose3> poses;
vector<Point2> measurements;
poses += Pose3();
measurements += Point2();
CHECK_EXCEPTION(triangulatePoint3(poses, sharedCal, measurements),
TriangulationUnderconstrainedException);
}
//******************************************************************************
TEST( triangulation, StereotriangulateNonlinear ) {
Cal3_S2Stereo::shared_ptr stereoK(new Cal3_S2Stereo(1733.75, 1733.75, 0, 689.645, 508.835, 0.0699612));
// two camera poses m1, m2
Matrix4 m1, m2;
m1 << 0.796888717, 0.603404026, -0.0295271487, 46.6673779,
0.592783835, -0.77156583, 0.230856632, 66.2186159,
0.116517574, -0.201470143, -0.9725393, -4.28382528,
0, 0, 0, 1;
m2 << -0.955959025, -0.29288915, -0.0189328569, 45.7169799,
-0.29277519, 0.947083213, 0.131587097, 65.843136,
-0.0206094928, 0.131334858, -0.991123524, -4.3525033,
0, 0, 0, 1;
typedef CameraSet<StereoCamera> Cameras;
Cameras cameras;
cameras.push_back(StereoCamera(Pose3(m1), stereoK));
cameras.push_back(StereoCamera(Pose3(m2), stereoK));
vector<StereoPoint2> measurements;
measurements += StereoPoint2(226.936, 175.212, 424.469);
measurements += StereoPoint2(339.571, 285.547, 669.973);
Point3 initial = Point3(46.0536958, 66.4621179, -6.56285929); // error: 96.5715555191
Point3 actual = triangulateNonlinear(cameras, measurements, initial);
Point3 expected(46.0484569, 66.4710686, -6.55046613); // error: 0.763510644187
EXPECT(assert_equal(expected, actual, 1e-4));
// regular stereo factor comparison - expect very similar result as above
{
typedef GenericStereoFactor<Pose3,Point3> StereoFactor;
Values values;
values.insert(Symbol('x', 1), Pose3(m1));
values.insert(Symbol('x', 2), Pose3(m2));
values.insert(Symbol('l', 1), initial);
NonlinearFactorGraph graph;
static SharedNoiseModel unit(noiseModel::Unit::Create(3));
graph.push_back(StereoFactor::shared_ptr(new StereoFactor(measurements[0], unit, Symbol('x',1), Symbol('l',1), stereoK)));
graph.push_back(StereoFactor::shared_ptr(new StereoFactor(measurements[1], unit, Symbol('x',2), Symbol('l',1), stereoK)));
const SharedDiagonal posePrior = noiseModel::Isotropic::Sigma(6, 1e-9);
graph.push_back(PriorFactor<Pose3>(Symbol('x',1), Pose3(m1), posePrior));
graph.push_back(PriorFactor<Pose3>(Symbol('x',2), Pose3(m2), posePrior));
LevenbergMarquardtOptimizer optimizer(graph, values);
Values result = optimizer.optimize();
EXPECT(assert_equal(expected, result.at<Point3>(Symbol('l',1)), 1e-4));
}
// use Triangulation Factor directly - expect same result as above
{
Values values;
values.insert(Symbol('l', 1), initial);
NonlinearFactorGraph graph;
static SharedNoiseModel unit(noiseModel::Unit::Create(3));
graph.push_back(TriangulationFactor<StereoCamera>(cameras[0], measurements[0], unit, Symbol('l',1)));
graph.push_back(TriangulationFactor<StereoCamera>(cameras[1], measurements[1], unit, Symbol('l',1)));
LevenbergMarquardtOptimizer optimizer(graph, values);
Values result = optimizer.optimize();
EXPECT(assert_equal(expected, result.at<Point3>(Symbol('l',1)), 1e-4));
}
// use ExpressionFactor - expect same result as above
{
Values values;
values.insert(Symbol('l', 1), initial);
NonlinearFactorGraph graph;
static SharedNoiseModel unit(noiseModel::Unit::Create(3));
Expression<Point3> point_(Symbol('l',1));
Expression<StereoCamera> camera0_(cameras[0]);
Expression<StereoCamera> camera1_(cameras[1]);
Expression<StereoPoint2> project0_(camera0_, &StereoCamera::project2, point_);
Expression<StereoPoint2> project1_(camera1_, &StereoCamera::project2, point_);
graph.addExpressionFactor(unit, measurements[0], project0_);
graph.addExpressionFactor(unit, measurements[1], project1_);
LevenbergMarquardtOptimizer optimizer(graph, values);
Values result = optimizer.optimize();
EXPECT(assert_equal(expected, result.at<Point3>(Symbol('l',1)), 1e-4));
}
}
//******************************************************************************
int main() {
TestResult tr;
return TestRegistry::runAllTests(tr);
}
//******************************************************************************