137 lines
5.4 KiB
C++
137 lines
5.4 KiB
C++
/* ----------------------------------------------------------------------------
|
|
|
|
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
|
* Atlanta, Georgia 30332-0415
|
|
* All Rights Reserved
|
|
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
|
|
|
* See LICENSE for the license information
|
|
|
|
* -------------------------------------------------------------------------- */
|
|
|
|
/**
|
|
* @file GaussianBayesTree.h
|
|
* @brief Gaussian Bayes Tree, the result of eliminating a GaussianJunctionTree
|
|
* @brief GaussianBayesTree
|
|
* @author Frank Dellaert
|
|
* @author Richard Roberts
|
|
*/
|
|
|
|
#pragma once
|
|
|
|
#include <gtsam/linear/GaussianBayesNet.h>
|
|
#include <gtsam/linear/GaussianFactorGraph.h>
|
|
#include <gtsam/inference/BayesTree.h>
|
|
#include <gtsam/inference/BayesTreeCliqueBase.h>
|
|
|
|
namespace gtsam {
|
|
|
|
// Forward declarations
|
|
class GaussianConditional;
|
|
class VectorValues;
|
|
|
|
/* ************************************************************************* */
|
|
/** A clique in a GaussianBayesTree */
|
|
class GTSAM_EXPORT GaussianBayesTreeClique :
|
|
public BayesTreeCliqueBase<GaussianBayesTreeClique, GaussianFactorGraph>
|
|
{
|
|
public:
|
|
typedef GaussianBayesTreeClique This;
|
|
typedef BayesTreeCliqueBase<GaussianBayesTreeClique, GaussianFactorGraph> Base;
|
|
typedef std::shared_ptr<This> shared_ptr;
|
|
typedef std::weak_ptr<This> weak_ptr;
|
|
GaussianBayesTreeClique() {}
|
|
GaussianBayesTreeClique(const std::shared_ptr<GaussianConditional>& conditional) : Base(conditional) {}
|
|
};
|
|
|
|
/* ************************************************************************* */
|
|
/** A Bayes tree representing a Gaussian density */
|
|
class GTSAM_EXPORT GaussianBayesTree :
|
|
public BayesTree<GaussianBayesTreeClique>
|
|
{
|
|
private:
|
|
typedef BayesTree<GaussianBayesTreeClique> Base;
|
|
|
|
public:
|
|
typedef GaussianBayesTree This;
|
|
typedef std::shared_ptr<This> shared_ptr;
|
|
|
|
/** Default constructor, creates an empty Bayes tree */
|
|
GaussianBayesTree() {}
|
|
|
|
/** Check equality */
|
|
bool equals(const This& other, double tol = 1e-9) const;
|
|
|
|
/** Recursively optimize the BayesTree to produce a vector solution. */
|
|
VectorValues optimize() const;
|
|
|
|
/**
|
|
* Optimize along the gradient direction, with a closed-form computation to perform the line
|
|
* search. The gradient is computed about \f$ \delta x=0 \f$.
|
|
*
|
|
* This function returns \f$ \delta x \f$ that minimizes a reparametrized problem. The error
|
|
* function of a GaussianBayesNet is
|
|
*
|
|
* \f[ f(\delta x) = \frac{1}{2} |R \delta x - d|^2 = \frac{1}{2}d^T d - d^T R \delta x +
|
|
* \frac{1}{2} \delta x^T R^T R \delta x \f]
|
|
*
|
|
* with gradient and Hessian
|
|
*
|
|
* \f[ g(\delta x) = R^T(R\delta x - d), \qquad G(\delta x) = R^T R. \f]
|
|
*
|
|
* This function performs the line search in the direction of the gradient evaluated at \f$ g =
|
|
* g(\delta x = 0) \f$ with step size \f$ \alpha \f$ that minimizes \f$ f(\delta x = \alpha g)
|
|
* \f$:
|
|
*
|
|
* \f[ f(\alpha) = \frac{1}{2} d^T d + g^T \delta x + \frac{1}{2} \alpha^2 g^T G g \f]
|
|
*
|
|
* Optimizing by setting the derivative to zero yields \f$ \hat \alpha = (-g^T g) / (g^T G g)
|
|
* \f$. For efficiency, this function evaluates the denominator without computing the Hessian
|
|
* \f$ G \f$, returning
|
|
*
|
|
* \f[ \delta x = \hat\alpha g = \frac{-g^T g}{(R g)^T(R g)} \f] */
|
|
VectorValues optimizeGradientSearch() const;
|
|
|
|
/** Compute the gradient of the energy function, \f$ \nabla_{x=x_0} \left\Vert \Sigma^{-1} R x -
|
|
* d \right\Vert^2 \f$, centered around \f$ x = x_0 \f$. The gradient is \f$ R^T(Rx-d) \f$.
|
|
*
|
|
* @param x0 The center about which to compute the gradient
|
|
* @return The gradient as a VectorValues */
|
|
VectorValues gradient(const VectorValues& x0) const;
|
|
|
|
/** Compute the gradient of the energy function, \f$ \nabla_{x=0} \left\Vert \Sigma^{-1} R x - d
|
|
* \right\Vert^2 \f$, centered around zero. The gradient about zero is \f$ -R^T d \f$. See also
|
|
* gradient(const GaussianBayesNet&, const VectorValues&).
|
|
*
|
|
* @return A VectorValues storing the gradient. */
|
|
VectorValues gradientAtZero() const;
|
|
|
|
/** 0.5 * sum of squared Mahalanobis distances. */
|
|
double error(const VectorValues& x) const;
|
|
|
|
/** Computes the determinant of a GassianBayesTree, as if the Bayes tree is reorganized into a
|
|
* matrix. A GassianBayesTree is equivalent to an upper triangular matrix, and for an upper
|
|
* triangular matrix determinant is the product of the diagonal elements. Instead of actually
|
|
* multiplying we add the logarithms of the diagonal elements and take the exponent at the end
|
|
* because this is more numerically stable. */
|
|
double determinant() const;
|
|
|
|
/** Computes the determinant of a GassianBayesTree, as if the Bayes tree is reorganized into a
|
|
* matrix. A GassianBayesTree is equivalent to an upper triangular matrix, and for an upper
|
|
* triangular matrix determinant is the product of the diagonal elements. Instead of actually
|
|
* multiplying we add the logarithms of the diagonal elements and take the exponent at the end
|
|
* because this is more numerically stable. */
|
|
double logDeterminant() const;
|
|
|
|
/** Return the marginal on the requested variable as a covariance matrix. See also
|
|
* marginalFactor(). */
|
|
Matrix marginalCovariance(Key key) const;
|
|
};
|
|
|
|
/// traits
|
|
template<>
|
|
struct traits<GaussianBayesTree> : public Testable<GaussianBayesTree> {
|
|
};
|
|
|
|
} //\ namespace gtsam
|