gtsam/gtsam/hybrid/GaussianMixture.cpp

299 lines
12 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file GaussianMixture.cpp
* @brief A hybrid conditional in the Conditional Linear Gaussian scheme
* @author Fan Jiang
* @author Varun Agrawal
* @author Frank Dellaert
* @date Mar 12, 2022
*/
#include <gtsam/base/utilities.h>
#include <gtsam/discrete/DiscreteValues.h>
#include <gtsam/hybrid/GaussianMixture.h>
#include <gtsam/hybrid/GaussianMixtureFactor.h>
#include <gtsam/hybrid/HybridValues.h>
#include <gtsam/inference/Conditional-inst.h>
#include <gtsam/linear/GaussianFactorGraph.h>
namespace gtsam {
GaussianMixture::GaussianMixture(
const KeyVector &continuousFrontals, const KeyVector &continuousParents,
const DiscreteKeys &discreteParents,
const GaussianMixture::Conditionals &conditionals)
: BaseFactor(CollectKeys(continuousFrontals, continuousParents),
discreteParents),
BaseConditional(continuousFrontals.size()),
conditionals_(conditionals) {}
/* *******************************************************************************/
const GaussianMixture::Conditionals &GaussianMixture::conditionals() const {
return conditionals_;
}
/* *******************************************************************************/
GaussianMixture::GaussianMixture(
KeyVector &&continuousFrontals, KeyVector &&continuousParents,
DiscreteKeys &&discreteParents,
std::vector<GaussianConditional::shared_ptr> &&conditionals)
: GaussianMixture(continuousFrontals, continuousParents, discreteParents,
Conditionals(discreteParents, conditionals)) {}
/* *******************************************************************************/
GaussianMixture::GaussianMixture(
const KeyVector &continuousFrontals, const KeyVector &continuousParents,
const DiscreteKeys &discreteParents,
const std::vector<GaussianConditional::shared_ptr> &conditionals)
: GaussianMixture(continuousFrontals, continuousParents, discreteParents,
Conditionals(discreteParents, conditionals)) {}
/* *******************************************************************************/
// TODO(dellaert): This is copy/paste: GaussianMixture should be derived from
// GaussianMixtureFactor, no?
GaussianFactorGraphTree GaussianMixture::add(
const GaussianFactorGraphTree &sum) const {
using Y = GraphAndConstant;
auto add = [](const Y &graph1, const Y &graph2) {
auto result = graph1.graph;
result.push_back(graph2.graph);
return Y(result, graph1.constant + graph2.constant);
};
const auto tree = asGaussianFactorGraphTree();
return sum.empty() ? tree : sum.apply(tree, add);
}
/* *******************************************************************************/
GaussianFactorGraphTree GaussianMixture::asGaussianFactorGraphTree() const {
auto lambda = [](const GaussianConditional::shared_ptr &conditional) {
GaussianFactorGraph result;
result.push_back(conditional);
if (conditional) {
return GraphAndConstant(result, conditional->logNormalizationConstant());
} else {
return GraphAndConstant(result, 0.0);
}
};
return {conditionals_, lambda};
}
/* *******************************************************************************/
size_t GaussianMixture::nrComponents() const {
size_t total = 0;
conditionals_.visit([&total](const GaussianFactor::shared_ptr &node) {
if (node) total += 1;
});
return total;
}
/* *******************************************************************************/
GaussianConditional::shared_ptr GaussianMixture::operator()(
const DiscreteValues &discreteValues) const {
auto &ptr = conditionals_(discreteValues);
if (!ptr) return nullptr;
auto conditional = boost::dynamic_pointer_cast<GaussianConditional>(ptr);
if (conditional)
return conditional;
else
throw std::logic_error(
"A GaussianMixture unexpectedly contained a non-conditional");
}
/* *******************************************************************************/
bool GaussianMixture::equals(const HybridFactor &lf, double tol) const {
const This *e = dynamic_cast<const This *>(&lf);
if (e == nullptr) return false;
// This will return false if either conditionals_ is empty or e->conditionals_
// is empty, but not if both are empty or both are not empty:
if (conditionals_.empty() ^ e->conditionals_.empty()) return false;
// Check the base and the factors:
return BaseFactor::equals(*e, tol) &&
conditionals_.equals(e->conditionals_,
[tol](const GaussianConditional::shared_ptr &f1,
const GaussianConditional::shared_ptr &f2) {
return f1->equals(*(f2), tol);
});
}
/* *******************************************************************************/
void GaussianMixture::print(const std::string &s,
const KeyFormatter &formatter) const {
std::cout << (s.empty() ? "" : s + "\n");
if (isContinuous()) std::cout << "Continuous ";
if (isDiscrete()) std::cout << "Discrete ";
if (isHybrid()) std::cout << "Hybrid ";
BaseConditional::print("", formatter);
std::cout << " Discrete Keys = ";
for (auto &dk : discreteKeys()) {
std::cout << "(" << formatter(dk.first) << ", " << dk.second << "), ";
}
std::cout << "\n";
conditionals_.print(
"", [&](Key k) { return formatter(k); },
[&](const GaussianConditional::shared_ptr &gf) -> std::string {
RedirectCout rd;
if (gf && !gf->empty()) {
gf->print("", formatter);
return rd.str();
} else {
return "nullptr";
}
});
}
/* ************************************************************************* */
KeyVector GaussianMixture::continuousParents() const {
// Get all parent keys:
const auto range = parents();
KeyVector continuousParentKeys(range.begin(), range.end());
// Loop over all discrete keys:
for (const auto &discreteKey : discreteKeys()) {
const Key key = discreteKey.first;
// remove that key from continuousParentKeys:
continuousParentKeys.erase(std::remove(continuousParentKeys.begin(),
continuousParentKeys.end(), key),
continuousParentKeys.end());
}
return continuousParentKeys;
}
/* ************************************************************************* */
boost::shared_ptr<GaussianMixtureFactor> GaussianMixture::likelihood(
const VectorValues &frontals) const {
// Check that values has all frontals
for (auto &&kv : frontals) {
if (frontals.find(kv.first) == frontals.end()) {
throw std::runtime_error("GaussianMixture: frontals missing factor key.");
}
}
const DiscreteKeys discreteParentKeys = discreteKeys();
const KeyVector continuousParentKeys = continuousParents();
const GaussianMixtureFactor::Factors likelihoods(
conditionals_, [&](const GaussianConditional::shared_ptr &conditional) {
return GaussianMixtureFactor::FactorAndConstant{
conditional->likelihood(frontals),
conditional->logNormalizationConstant()};
});
return boost::make_shared<GaussianMixtureFactor>(
continuousParentKeys, discreteParentKeys, likelihoods);
}
/* ************************************************************************* */
std::set<DiscreteKey> DiscreteKeysAsSet(const DiscreteKeys &discreteKeys) {
std::set<DiscreteKey> s;
s.insert(discreteKeys.begin(), discreteKeys.end());
return s;
}
/* ************************************************************************* */
/**
* @brief Helper function to get the pruner functional.
*
* @param decisionTree The probability decision tree of only discrete keys.
* @return std::function<GaussianConditional::shared_ptr(
* const Assignment<Key> &, const GaussianConditional::shared_ptr &)>
*/
std::function<GaussianConditional::shared_ptr(
const Assignment<Key> &, const GaussianConditional::shared_ptr &)>
GaussianMixture::prunerFunc(const DecisionTreeFactor &decisionTree) {
// Get the discrete keys as sets for the decision tree
// and the gaussian mixture.
auto decisionTreeKeySet = DiscreteKeysAsSet(decisionTree.discreteKeys());
auto gaussianMixtureKeySet = DiscreteKeysAsSet(this->discreteKeys());
auto pruner = [decisionTree, decisionTreeKeySet, gaussianMixtureKeySet](
const Assignment<Key> &choices,
const GaussianConditional::shared_ptr &conditional)
-> GaussianConditional::shared_ptr {
// typecast so we can use this to get probability value
const DiscreteValues values(choices);
// Case where the gaussian mixture has the same
// discrete keys as the decision tree.
if (gaussianMixtureKeySet == decisionTreeKeySet) {
if (decisionTree(values) == 0.0) {
// empty aka null pointer
boost::shared_ptr<GaussianConditional> null;
return null;
} else {
return conditional;
}
} else {
std::vector<DiscreteKey> set_diff;
std::set_difference(decisionTreeKeySet.begin(), decisionTreeKeySet.end(),
gaussianMixtureKeySet.begin(),
gaussianMixtureKeySet.end(),
std::back_inserter(set_diff));
const std::vector<DiscreteValues> assignments =
DiscreteValues::CartesianProduct(set_diff);
for (const DiscreteValues &assignment : assignments) {
DiscreteValues augmented_values(values);
augmented_values.insert(assignment);
// If any one of the sub-branches are non-zero,
// we need this conditional.
if (decisionTree(augmented_values) > 0.0) {
return conditional;
}
}
// If we are here, it means that all the sub-branches are 0,
// so we prune.
return nullptr;
}
};
return pruner;
}
/* *******************************************************************************/
void GaussianMixture::prune(const DecisionTreeFactor &decisionTree) {
auto decisionTreeKeySet = DiscreteKeysAsSet(decisionTree.discreteKeys());
auto gmKeySet = DiscreteKeysAsSet(this->discreteKeys());
// Functional which loops over all assignments and create a set of
// GaussianConditionals
auto pruner = prunerFunc(decisionTree);
auto pruned_conditionals = conditionals_.apply(pruner);
conditionals_.root_ = pruned_conditionals.root_;
}
/* *******************************************************************************/
AlgebraicDecisionTree<Key> GaussianMixture::error(
const VectorValues &continuousValues) const {
// functor to calculate to double error value from GaussianConditional.
auto errorFunc =
[continuousValues](const GaussianConditional::shared_ptr &conditional) {
if (conditional) {
return conditional->error(continuousValues);
} else {
// Return arbitrarily large error if conditional is null
// Conditional is null if it is pruned out.
return 1e50;
}
};
DecisionTree<Key, double> errorTree(conditionals_, errorFunc);
return errorTree;
}
/* *******************************************************************************/
double GaussianMixture::error(const HybridValues &values) const {
// Directly index to get the conditional, no need to build the whole tree.
auto conditional = conditionals_(values.discrete());
return conditional->error(values.continuous());
}
} // namespace gtsam