gtsam/geometry/tests/testPose2.cpp

571 lines
19 KiB
C++

/**
* @file testPose2.cpp
* @brief Unit tests for Pose2 class
*/
#include <cmath>
#include <iostream>
#include <boost/foreach.hpp>
#include <boost/optional.hpp>
#include <boost/assign/std/vector.hpp> // for operator +=
using namespace boost::assign;
#include <gtsam/CppUnitLite/TestHarness.h>
#include <gtsam/base/numericalDerivative.h>
#include <gtsam/base/lieProxies.h>
#include <gtsam/geometry/Pose2.h>
#include <gtsam/geometry/Point2.h>
#include <gtsam/geometry/Rot2.h>
using namespace gtsam;
using namespace std;
// #define SLOW_BUT_CORRECT_EXPMAP
/* ************************************************************************* */
TEST(Pose2, constructors) {
//cout << "constructors" << endl;
Point2 p;
Pose2 pose(0,p);
Pose2 origin;
assert_equal(pose,origin);
Pose2 t(M_PI_2+0.018, Point2(1.015, 2.01));
EXPECT(assert_equal(t,Pose2(t.matrix())));
}
/* ************************************************************************* */
TEST(Pose2, manifold) {
//cout << "manifold" << endl;
Pose2 t1(M_PI_2, Point2(1, 2));
Pose2 t2(M_PI_2+0.018, Point2(1.015, 2.01));
Pose2 origin;
Vector d12 = t1.logmap(t2);
EXPECT(assert_equal(t2, t1.expmap(d12)));
EXPECT(assert_equal(t2, t1*origin.expmap(d12)));
Vector d21 = t2.logmap(t1);
EXPECT(assert_equal(t1, t2.expmap(d21)));
EXPECT(assert_equal(t1, t2*origin.expmap(d21)));
}
/* ************************************************************************* */
TEST(Pose2, expmap) {
//cout << "expmap" << endl;
Pose2 pose(M_PI_2, Point2(1, 2));
#ifdef SLOW_BUT_CORRECT_EXPMAP
Pose2 expected(1.00811, 2.01528, 2.5608);
#else
Pose2 expected(M_PI_2+0.99, Point2(1.015, 2.01));
#endif
Pose2 actual = pose.expmap(Vector_(3, 0.01, -0.015, 0.99));
EXPECT(assert_equal(expected, actual, 1e-5));
}
/* ************************************************************************* */
TEST(Pose2, expmap2) {
// do an actual series exponential map
// see e.g. http://www.cis.upenn.edu/~cis610/cis610lie1.ps
Matrix A = Matrix_(3,3,
0.0, -0.99, 0.01,
0.99, 0.0, -0.015,
0.0, 0.0, 0.0);
Matrix A2 = A*A/2.0, A3 = A2*A/3.0, A4=A3*A/4.0;
Matrix expected = eye(3) + A + A2 + A3 + A4;
Pose2 pose = Pose2::Expmap(Vector_(3, 0.01, -0.015, 0.99));
Matrix actual = pose.matrix();
//EXPECT(assert_equal(expected, actual));
}
/* ************************************************************************* */
TEST(Pose2, expmap0) {
//cout << "expmap0" << endl;
Pose2 pose(M_PI_2, Point2(1, 2));
#ifdef SLOW_BUT_CORRECT_EXPMAP
Pose2 expected(1.01491, 2.01013, 1.5888);
#else
Pose2 expected(M_PI_2+0.018, Point2(1.015, 2.01));
#endif
Pose2 actual = pose * Pose2::Expmap(Vector_(3, 0.01, -0.015, 0.018));
EXPECT(assert_equal(expected, actual, 1e-5));
}
#ifdef SLOW_BUT_CORRECT_EXPMAP
/* ************************************************************************* */
// test case for screw motion in the plane
namespace screw {
double w=0.3;
Vector xi = Vector_(3, 0.0, w, w);
Rot2 expectedR = Rot2::fromAngle(w);
Point2 expectedT(-0.0446635, 0.29552);
Pose2 expected(expectedR, expectedT);
}
TEST(Pose3, expmap_c)
{
EXPECT(assert_equal(screw::expected, expm<Pose2>(screw::xi),1e-6));
EXPECT(assert_equal(screw::expected, Pose2::Expmap(screw::xi),1e-6));
EXPECT(assert_equal(screw::xi, Pose2::Logmap(screw::expected),1e-6));
}
#endif
/* ************************************************************************* */
TEST(Pose2, logmap) {
//cout << "logmap" << endl;
Pose2 pose0(M_PI_2, Point2(1, 2));
Pose2 pose(M_PI_2+0.018, Point2(1.015, 2.01));
#ifdef SLOW_BUT_CORRECT_EXPMAP
Vector expected = Vector_(3, 0.00986473, -0.0150896, 0.018);
#else
Vector expected = Vector_(3, 0.01, -0.015, 0.018);
#endif
Vector actual = pose0.logmap(pose);
EXPECT(assert_equal(expected, actual, 1e-5));
}
/* ************************************************************************* */
Point2 transform_to_proxy(const Pose2& pose, const Point2& point) {
return pose.transform_to(point);
}
TEST( Pose2, transform_to )
{
Pose2 pose(M_PI_2, Point2(1,2)); // robot at (1,2) looking towards y
Point2 point(-1,4); // landmark at (-1,4)
// expected
Point2 expected(2,2);
Matrix expectedH1 = Matrix_(2,3, -1.0, 0.0, 2.0, 0.0, -1.0, -2.0);
Matrix expectedH2 = Matrix_(2,2, 0.0, 1.0, -1.0, 0.0);
// actual
Matrix actualH1, actualH2;
Point2 actual = pose.transform_to(point, actualH1, actualH2);
EXPECT(assert_equal(expected,actual));
EXPECT(assert_equal(expectedH1,actualH1));
Matrix numericalH1 = numericalDerivative21(transform_to_proxy, pose, point, 1e-5);
EXPECT(assert_equal(numericalH1,actualH1));
EXPECT(assert_equal(expectedH2,actualH2));
Matrix numericalH2 = numericalDerivative22(transform_to_proxy, pose, point, 1e-5);
EXPECT(assert_equal(numericalH2,actualH2));
}
/* ************************************************************************* */
Point2 transform_from_proxy(const Pose2& pose, const Point2& point) {
return pose.transform_from(point);
}
TEST (Pose2, transform_from)
{
Pose2 pose(1., 0., M_PI_2);
Point2 pt(2., 1.);
Matrix H1, H2;
Point2 actual = pose.transform_from(pt, H1, H2);
Point2 expected(0., 2.);
EXPECT(assert_equal(expected, actual));
Matrix H1_expected = Matrix_(2, 3, 0., -1., -2., 1., 0., -1.);
Matrix H2_expected = Matrix_(2, 2, 0., -1., 1., 0.);
Matrix numericalH1 = numericalDerivative21(transform_from_proxy, pose, pt, 1e-5);
EXPECT(assert_equal(H1_expected, H1));
EXPECT(assert_equal(H1_expected, numericalH1));
Matrix numericalH2 = numericalDerivative22(transform_from_proxy, pose, pt, 1e-5);
EXPECT(assert_equal(H2_expected, H2));
EXPECT(assert_equal(H2_expected, numericalH2));
}
/* ************************************************************************* */
TEST(Pose2, compose_a)
{
//cout << "compose_a" << endl;
Pose2 pose1(M_PI/4.0, Point2(sqrt(0.5), sqrt(0.5)));
Pose2 pose2(M_PI/2.0, Point2(0.0, 2.0));
Matrix actualDcompose1;
Matrix actualDcompose2;
Pose2 actual = pose1.compose(pose2, actualDcompose1, actualDcompose2);
Pose2 expected(3.0*M_PI/4.0, Point2(-sqrt(0.5), 3.0*sqrt(0.5)));
EXPECT(assert_equal(expected, actual));
Matrix expectedH1 = Matrix_(3,3,
0.0, 1.0, 0.0,
-1.0, 0.0, 2.0,
0.0, 0.0, 1.0
);
Matrix expectedH2 = eye(3);
Matrix numericalH1 = numericalDerivative21<Pose2, Pose2, Pose2>(testing::compose, pose1, pose2, 1e-5);
Matrix numericalH2 = numericalDerivative22<Pose2, Pose2, Pose2>(testing::compose, pose1, pose2, 1e-5);
EXPECT(assert_equal(expectedH1,actualDcompose1));
EXPECT(assert_equal(numericalH1,actualDcompose1));
EXPECT(assert_equal(expectedH2,actualDcompose2));
EXPECT(assert_equal(numericalH2,actualDcompose2));
Point2 point(sqrt(0.5), 3.0*sqrt(0.5));
Point2 expected_point(-1.0, -1.0);
Point2 actual_point1 = (pose1 * pose2).transform_to(point);
Point2 actual_point2 = pose2.transform_to(pose1.transform_to(point));
EXPECT(assert_equal(expected_point, actual_point1));
EXPECT(assert_equal(expected_point, actual_point2));
}
/* ************************************************************************* */
TEST(Pose2, compose_b)
{
//cout << "compose_b" << endl;
Pose2 pose1(Rot2::fromAngle(M_PI/10.0), Point2(.75, .5));
Pose2 pose2(Rot2::fromAngle(M_PI/4.0-M_PI/10.0), Point2(0.701289620636, 1.34933052585));
Pose2 pose_expected(Rot2::fromAngle(M_PI/4.0), Point2(1.0, 2.0));
Pose2 pose_actual_op = pose1 * pose2;
Matrix actualDcompose1, actualDcompose2;
Pose2 pose_actual_fcn = pose1.compose(pose2, actualDcompose1, actualDcompose2);
Matrix numericalH1 = numericalDerivative21<Pose2, Pose2, Pose2>(testing::compose, pose1, pose2, 1e-5);
Matrix numericalH2 = numericalDerivative22<Pose2, Pose2, Pose2>(testing::compose, pose1, pose2, 1e-5);
EXPECT(assert_equal(numericalH1,actualDcompose1,1e-5));
EXPECT(assert_equal(numericalH2,actualDcompose2));
EXPECT(assert_equal(pose_expected, pose_actual_op));
EXPECT(assert_equal(pose_expected, pose_actual_fcn));
}
/* ************************************************************************* */
TEST(Pose2, compose_c)
{
//cout << "compose_c" << endl;
Pose2 pose1(Rot2::fromAngle(M_PI/4.0), Point2(1.0, 1.0));
Pose2 pose2(Rot2::fromAngle(M_PI/4.0), Point2(sqrt(.5), sqrt(.5)));
Pose2 pose_expected(Rot2::fromAngle(M_PI/2.0), Point2(1.0, 2.0));
Pose2 pose_actual_op = pose1 * pose2;
Matrix actualDcompose1, actualDcompose2;
Pose2 pose_actual_fcn = pose1.compose(pose2, actualDcompose1, actualDcompose2);
Matrix numericalH1 = numericalDerivative21<Pose2, Pose2, Pose2>(testing::compose, pose1, pose2, 1e-5);
Matrix numericalH2 = numericalDerivative22<Pose2, Pose2, Pose2>(testing::compose, pose1, pose2, 1e-5);
EXPECT(assert_equal(numericalH1,actualDcompose1,1e-5));
EXPECT(assert_equal(numericalH2,actualDcompose2));
EXPECT(assert_equal(pose_expected, pose_actual_op));
EXPECT(assert_equal(pose_expected, pose_actual_fcn));
}
/* ************************************************************************* */
TEST(Pose2, inverse )
{
Point2 origin, t(1,2);
Pose2 gTl(M_PI_2, t); // robot at (1,2) looking towards y
Pose2 identity, lTg = gTl.inverse();
EXPECT(assert_equal(identity,lTg.compose(gTl)));
EXPECT(assert_equal(identity,gTl.compose(lTg)));
Point2 l(4,5), g(-4,6);
EXPECT(assert_equal(g,gTl*l));
EXPECT(assert_equal(l,lTg*g));
// Check derivative
Matrix numericalH = numericalDerivative11<Pose2,Pose2>(testing::inverse, lTg, 1e-5);
Matrix actualDinverse;
lTg.inverse(actualDinverse);
EXPECT(assert_equal(numericalH,actualDinverse));
}
/* ************************************************************************* */
Vector homogeneous(const Point2& p) {
return Vector_(3, p.x(), p.y(), 1.0);
}
/* ************************************************************************* */
Matrix matrix(const Pose2& gTl) {
Matrix gRl = gTl.r().matrix();
Point2 gt = gTl.t();
return Matrix_(3, 3,
gRl(0, 0), gRl(0, 1), gt.x(),
gRl(1, 0), gRl(1, 1), gt.y(),
0.0, 0.0, 1.0);
}
/* ************************************************************************* */
TEST( Pose2, matrix )
{
Point2 origin, t(1,2);
Pose2 gTl(M_PI_2, t); // robot at (1,2) looking towards y
Matrix gMl = matrix(gTl);
EXPECT(assert_equal(Matrix_(3,3,
0.0, -1.0, 1.0,
1.0, 0.0, 2.0,
0.0, 0.0, 1.0),
gMl));
Rot2 gR1 = gTl.r();
EXPECT(assert_equal(homogeneous(t),gMl*homogeneous(origin)));
Point2 x_axis(1,0), y_axis(0,1);
EXPECT(assert_equal(Matrix_(2,2,
0.0, -1.0,
1.0, 0.0),
gR1.matrix()));
EXPECT(assert_equal(Point2(0,1),gR1*x_axis));
EXPECT(assert_equal(Point2(-1,0),gR1*y_axis));
EXPECT(assert_equal(homogeneous(Point2(1+0,2+1)),gMl*homogeneous(x_axis)));
EXPECT(assert_equal(homogeneous(Point2(1-1,2+0)),gMl*homogeneous(y_axis)));
// check inverse pose
Matrix lMg = matrix(gTl.inverse());
EXPECT(assert_equal(Matrix_(3,3,
0.0, 1.0,-2.0,
-1.0, 0.0, 1.0,
0.0, 0.0, 1.0),
lMg));
}
/* ************************************************************************* */
TEST( Pose2, compose_matrix )
{
Pose2 gT1(M_PI_2, Point2(1,2)); // robot at (1,2) looking towards y
Pose2 _1T2(M_PI, Point2(-1,4)); // local robot at (-1,4) loooking at negative x
Matrix gM1(matrix(gT1)),_1M2(matrix(_1T2));
EXPECT(assert_equal(gM1*_1M2,matrix(gT1.compose(_1T2)))); // RIGHT DOES NOT
}
/* ************************************************************************* */
TEST( Pose2, between )
{
// <
//
// ^
//
// *--0--*--*
Pose2 gT1(M_PI_2, Point2(1,2)); // robot at (1,2) looking towards y
Pose2 gT2(M_PI, Point2(-1,4)); // robot at (-1,4) loooking at negative x
Matrix actualH1,actualH2;
Pose2 expected(M_PI_2, Point2(2,2));
Pose2 actual1 = gT1.between(gT2);
Pose2 actual2 = gT1.between(gT2,actualH1,actualH2);
EXPECT(assert_equal(expected,actual1));
EXPECT(assert_equal(expected,actual2));
Matrix expectedH1 = Matrix_(3,3,
0.0,-1.0,-2.0,
1.0, 0.0,-2.0,
0.0, 0.0,-1.0
);
Matrix numericalH1 = numericalDerivative21<Pose2,Pose2,Pose2>(testing::between, gT1, gT2, 1e-5);
EXPECT(assert_equal(expectedH1,actualH1));
EXPECT(assert_equal(numericalH1,actualH1));
// Assert H1 = -AdjointMap(between(p2,p1)) as in doc/math.lyx
EXPECT(assert_equal(-gT2.between(gT1).AdjointMap(),actualH1));
Matrix expectedH2 = Matrix_(3,3,
1.0, 0.0, 0.0,
0.0, 1.0, 0.0,
0.0, 0.0, 1.0
);
Matrix numericalH2 = numericalDerivative22<Pose2,Pose2,Pose2>(testing::between, gT1, gT2, 1e-5);
EXPECT(assert_equal(expectedH2,actualH2));
EXPECT(assert_equal(numericalH2,actualH2));
}
/* ************************************************************************* */
// reverse situation for extra test
TEST( Pose2, between2 )
{
Pose2 p2(M_PI_2, Point2(1,2)); // robot at (1,2) looking towards y
Pose2 p1(M_PI, Point2(-1,4)); // robot at (-1,4) loooking at negative x
Matrix actualH1,actualH2;
p1.between(p2,actualH1,actualH2);
Matrix numericalH1 = numericalDerivative21<Pose2,Pose2,Pose2>(testing::between, p1, p2, 1e-5);
EXPECT(assert_equal(numericalH1,actualH1));
Matrix numericalH2 = numericalDerivative22<Pose2,Pose2,Pose2>(testing::between, p1, p2, 1e-5);
EXPECT(assert_equal(numericalH2,actualH2));
}
/* ************************************************************************* */
TEST( Pose2, round_trip )
{
Pose2 p1(1.23, 2.30, 0.2);
Pose2 odo(0.53, 0.39, 0.15);
Pose2 p2 = p1.compose(odo);
EXPECT(assert_equal(odo, p1.between(p2)));
}
/* ************************************************************************* */
TEST(Pose2, members)
{
Pose2 pose;
EXPECT(pose.dim() == 3);
}
/* ************************************************************************* */
// some shared test values
Pose2 x1, x2(1, 1, 0), x3(1, 1, M_PI_4);
Point2 l1(1, 0), l2(1, 1), l3(2, 2), l4(1, 3);
/* ************************************************************************* */
Rot2 bearing_proxy(const Pose2& pose, const Point2& pt) {
return pose.bearing(pt);
}
TEST( Pose2, bearing )
{
Matrix expectedH1, actualH1, expectedH2, actualH2;
// establish bearing is indeed zero
EXPECT(assert_equal(Rot2(),x1.bearing(l1)));
// establish bearing is indeed 45 degrees
EXPECT(assert_equal(Rot2::fromAngle(M_PI_4),x1.bearing(l2)));
// establish bearing is indeed 45 degrees even if shifted
Rot2 actual23 = x2.bearing(l3, actualH1, actualH2);
EXPECT(assert_equal(Rot2::fromAngle(M_PI_4),actual23));
// Check numerical derivatives
expectedH1 = numericalDerivative21(bearing_proxy, x2, l3, 1e-5);
EXPECT(assert_equal(expectedH1,actualH1));
expectedH2 = numericalDerivative22(bearing_proxy, x2, l3, 1e-5);
EXPECT(assert_equal(expectedH1,actualH1));
// establish bearing is indeed 45 degrees even if rotated
Rot2 actual34 = x3.bearing(l4, actualH1, actualH2);
EXPECT(assert_equal(Rot2::fromAngle(M_PI_4),actual34));
// Check numerical derivatives
expectedH1 = numericalDerivative21(bearing_proxy, x3, l4, 1e-5);
expectedH2 = numericalDerivative22(bearing_proxy, x3, l4, 1e-5);
EXPECT(assert_equal(expectedH1,actualH1));
EXPECT(assert_equal(expectedH1,actualH1));
}
/* ************************************************************************* */
LieVector range_proxy(const Pose2& pose, const Point2& point) {
return LieVector(pose.range(point));
}
TEST( Pose2, range )
{
Matrix expectedH1, actualH1, expectedH2, actualH2;
// establish range is indeed zero
EXPECT_DOUBLES_EQUAL(1,x1.range(l1),1e-9);
// establish range is indeed 45 degrees
EXPECT_DOUBLES_EQUAL(sqrt(2),x1.range(l2),1e-9);
// Another pair
double actual23 = x2.range(l3, actualH1, actualH2);
EXPECT_DOUBLES_EQUAL(sqrt(2),actual23,1e-9);
// Check numerical derivatives
expectedH1 = numericalDerivative21(range_proxy, x2, l3, 1e-5);
expectedH2 = numericalDerivative22(range_proxy, x2, l3, 1e-5);
EXPECT(assert_equal(expectedH1,actualH1));
EXPECT(assert_equal(expectedH2,actualH2));
// Another test
double actual34 = x3.range(l4, actualH1, actualH2);
EXPECT_DOUBLES_EQUAL(2,actual34,1e-9);
// Check numerical derivatives
expectedH1 = numericalDerivative21(range_proxy, x3, l4, 1e-5);
expectedH2 = numericalDerivative22(range_proxy, x3, l4, 1e-5);
EXPECT(assert_equal(expectedH1,actualH1));
EXPECT(assert_equal(expectedH2,actualH2));
}
/* ************************************************************************* */
TEST(Pose2, align_1) {
Pose2 expected(Rot2::fromAngle(0), Point2(10,10));
vector<Point2Pair> correspondences;
Point2Pair pq1(make_pair(Point2(0,0), Point2(10,10)));
Point2Pair pq2(make_pair(Point2(20,10), Point2(30,20)));
correspondences += pq1, pq2;
boost::optional<Pose2> actual = align(correspondences);
EXPECT(assert_equal(expected, *actual));
}
TEST(Pose2, align_2) {
Point2 t(20,10);
Rot2 R = Rot2::fromAngle(M_PI_2);
Pose2 expected(R, t);
vector<Point2Pair> correspondences;
Point2 p1(0,0), p2(10,0);
Point2 q1 = expected.transform_from(p1), q2 = expected.transform_from(p2);
EXPECT(assert_equal(Point2(20,10),q1));
EXPECT(assert_equal(Point2(20,20),q2));
Point2Pair pq1(make_pair(p1, q1));
Point2Pair pq2(make_pair(p2, q2));
correspondences += pq1, pq2;
boost::optional<Pose2> actual = align(correspondences);
EXPECT(assert_equal(expected, *actual));
}
namespace align_3 {
Point2 t(10,10);
Pose2 expected(Rot2::fromAngle(2*M_PI/3), t);
Point2 p1(0,0), p2(10,0), p3(10,10);
Point2 q1 = expected.transform_from(p1), q2 = expected.transform_from(p2), q3 = expected.transform_from(p3);
}
TEST(Pose2, align_3) {
using namespace align_3;
vector<Point2Pair> correspondences;
Point2Pair pq1(make_pair(p1, q1));
Point2Pair pq2(make_pair(p2, q2));
Point2Pair pq3(make_pair(p3, q3));
correspondences += pq1, pq2, pq3;
boost::optional<Pose2> actual = align(correspondences);
EXPECT(assert_equal(expected, *actual));
}
/* ************************************************************************* */
// Prototype code to align two triangles using a rigid transform
/* ************************************************************************* */
struct Triangle { size_t i_,j_,k_;};
boost::optional<Pose2> align(const vector<Point2>& ps, const vector<Point2>& qs,
const pair<Triangle, Triangle>& trianglePair) {
const Triangle& t1 = trianglePair.first, t2 = trianglePair.second;
vector<Point2Pair> correspondences;
correspondences += make_pair(ps[t1.i_],qs[t2.i_]), make_pair(ps[t1.j_],qs[t2.j_]), make_pair(ps[t1.k_],qs[t2.k_]);
return align(correspondences);
}
TEST(Pose2, align_4) {
using namespace align_3;
vector<Point2> ps,qs;
ps += p1, p2, p3;
qs += q3, q1, q2; // note in 3,1,2 order !
Triangle t1; t1.i_=0; t1.j_=1; t1.k_=2;
Triangle t2; t2.i_=1; t2.j_=2; t2.k_=0;
boost::optional<Pose2> actual = align(ps, qs, make_pair(t1,t2));
EXPECT(assert_equal(expected, *actual));
}
/* ************************************************************************* */
int main() {
TestResult tr;
return TestRegistry::runAllTests(tr);
}
/* ************************************************************************* */