gtsam/gtsam/linear/NoiseModel.cpp

844 lines
27 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file NoiseModel.cpp
* @date Jan 13, 2010
* @author Richard Roberts
* @author Frank Dellaert
*/
#include <gtsam/linear/NoiseModel.h>
#include <gtsam/base/timing.h>
#include <boost/foreach.hpp>
#include <boost/random/linear_congruential.hpp>
#include <boost/random/normal_distribution.hpp>
#include <boost/random/variate_generator.hpp>
#include <limits>
#include <iostream>
#include <typeinfo>
#include <stdexcept>
#include <cmath>
using namespace std;
namespace gtsam {
namespace noiseModel {
/* ************************************************************************* */
// update A, b
// A' \define A_{S}-ar and b'\define b-ad
// Linear algebra: takes away projection on latest orthogonal
// Graph: make a new factor on the separator S
// __attribute__ ((noinline)) // uncomment to prevent inlining when profiling
template<class MATRIX>
void updateAb(MATRIX& Ab, int j, const Vector& a, const Vector& rd) {
size_t n = Ab.cols()-1;
Ab.middleCols(j+1,n-j) -= a * rd.segment(j+1, n-j).transpose();
}
/* ************************************************************************* */
// check *above the diagonal* for non-zero entries
boost::optional<Vector> checkIfDiagonal(const Matrix M) {
size_t m = M.rows(), n = M.cols();
// check all non-diagonal entries
bool full = false;
size_t i, j;
for (i = 0; i < m; i++)
if (!full)
for (j = i + 1; j < n; j++)
if (fabs(M(i, j)) > 1e-9) {
full = true;
break;
}
if (full) {
return boost::none;
} else {
Vector diagonal(n);
for (j = 0; j < n; j++)
diagonal(j) = M(j, j);
return diagonal;
}
}
/* ************************************************************************* */
Vector Base::sigmas() const {
throw("Base::sigmas: sigmas() not implemented for this noise model");
}
/* ************************************************************************* */
Gaussian::shared_ptr Gaussian::SqrtInformation(const Matrix& R, bool smart) {
size_t m = R.rows(), n = R.cols();
if (m != n)
throw invalid_argument("Gaussian::SqrtInformation: R not square");
boost::optional<Vector> diagonal = boost::none;
if (smart)
diagonal = checkIfDiagonal(R);
if (diagonal)
return Diagonal::Sigmas(diagonal->array().inverse(), true);
else
return shared_ptr(new Gaussian(R.rows(), R));
}
/* ************************************************************************* */
Gaussian::shared_ptr Gaussian::Information(const Matrix& information, bool smart) {
size_t m = information.rows(), n = information.cols();
if (m != n)
throw invalid_argument("Gaussian::Information: R not square");
boost::optional<Vector> diagonal = boost::none;
if (smart)
diagonal = checkIfDiagonal(information);
if (diagonal)
return Diagonal::Precisions(*diagonal, true);
else {
Eigen::LLT<Matrix> llt(information);
Matrix R = llt.matrixU();
return shared_ptr(new Gaussian(n, R));
}
}
/* ************************************************************************* */
Gaussian::shared_ptr Gaussian::Covariance(const Matrix& covariance,
bool smart) {
size_t m = covariance.rows(), n = covariance.cols();
if (m != n)
throw invalid_argument("Gaussian::Covariance: covariance not square");
boost::optional<Vector> variances = boost::none;
if (smart)
variances = checkIfDiagonal(covariance);
if (variances)
return Diagonal::Variances(*variances, true);
else {
// TODO: can we do this more efficiently and still get an upper triangular nmatrix??
return Information(covariance.inverse(), false);
}
}
/* ************************************************************************* */
void Gaussian::print(const string& name) const {
gtsam::print(thisR(), name + "Gaussian");
}
/* ************************************************************************* */
bool Gaussian::equals(const Base& expected, double tol) const {
const Gaussian* p = dynamic_cast<const Gaussian*> (&expected);
if (p == NULL) return false;
if (typeid(*this) != typeid(*p)) return false;
//if (!sqrt_information_) return true; // ALEX todo;
return equal_with_abs_tol(R(), p->R(), sqrt(tol));
}
/* ************************************************************************* */
Vector Gaussian::sigmas() const {
// TODO(frank): can this be done faster?
return (thisR().transpose() * thisR()).inverse().diagonal().array().sqrt();
}
/* ************************************************************************* */
Vector Gaussian::whiten(const Vector& v) const {
return thisR() * v;
}
/* ************************************************************************* */
Vector Gaussian::unwhiten(const Vector& v) const {
return backSubstituteUpper(thisR(), v);
}
/* ************************************************************************* */
double Gaussian::Mahalanobis(const Vector& v) const {
// Note: for Diagonal, which does ediv_, will be correct for constraints
Vector w = whiten(v);
return w.dot(w);
}
/* ************************************************************************* */
Matrix Gaussian::Whiten(const Matrix& H) const {
return thisR() * H;
}
/* ************************************************************************* */
void Gaussian::WhitenInPlace(Matrix& H) const {
H = thisR() * H;
}
/* ************************************************************************* */
void Gaussian::WhitenInPlace(Eigen::Block<Matrix> H) const {
H = thisR() * H;
}
/* ************************************************************************* */
// General QR, see also special version in Constrained
SharedDiagonal Gaussian::QR(Matrix& Ab) const {
gttic(Gaussian_noise_model_QR);
static const bool debug = false;
// get size(A) and maxRank
// TODO: really no rank problems ?
// size_t m = Ab.rows(), n = Ab.cols()-1;
// size_t maxRank = min(m,n);
// pre-whiten everything (cheaply if possible)
WhitenInPlace(Ab);
if(debug) gtsam::print(Ab, "Whitened Ab: ");
// Eigen QR - much faster than older householder approach
inplace_QR(Ab);
// hand-coded householder implementation
// TODO: necessary to isolate last column?
// householder(Ab, maxRank);
return SharedDiagonal();
}
void Gaussian::WhitenSystem(vector<Matrix>& A, Vector& b) const {
BOOST_FOREACH(Matrix& Aj, A) { WhitenInPlace(Aj); }
whitenInPlace(b);
}
void Gaussian::WhitenSystem(Matrix& A, Vector& b) const {
WhitenInPlace(A);
whitenInPlace(b);
}
void Gaussian::WhitenSystem(Matrix& A1, Matrix& A2, Vector& b) const {
WhitenInPlace(A1);
WhitenInPlace(A2);
whitenInPlace(b);
}
void Gaussian::WhitenSystem(Matrix& A1, Matrix& A2, Matrix& A3, Vector& b) const{
WhitenInPlace(A1);
WhitenInPlace(A2);
WhitenInPlace(A3);
whitenInPlace(b);
}
/* ************************************************************************* */
// Diagonal
/* ************************************************************************* */
Diagonal::Diagonal() :
Gaussian(1) // TODO: Frank asks: really sure about this?
{
}
/* ************************************************************************* */
Diagonal::Diagonal(const Vector& sigmas)
: Gaussian(sigmas.size()),
sigmas_(sigmas),
invsigmas_(sigmas.array().inverse()),
precisions_(invsigmas_.array().square()) {
}
/* ************************************************************************* */
Diagonal::shared_ptr Diagonal::Variances(const Vector& variances, bool smart) {
if (smart) {
// check whether all the same entry
size_t n = variances.size();
for (size_t j = 1; j < n; j++)
if (variances(j) != variances(0)) goto full;
return Isotropic::Variance(n, variances(0), true);
}
full: return shared_ptr(new Diagonal(esqrt(variances)));
}
/* ************************************************************************* */
Diagonal::shared_ptr Diagonal::Sigmas(const Vector& sigmas, bool smart) {
if (smart) {
size_t n = sigmas.size();
if (n==0) goto full;
// look for zeros to make a constraint
for (size_t j=0; j< n; ++j)
if (sigmas(j)<1e-8)
return Constrained::MixedSigmas(sigmas);
// check whether all the same entry
for (size_t j = 1; j < n; j++)
if (sigmas(j) != sigmas(0)) goto full;
return Isotropic::Sigma(n, sigmas(0), true);
}
full: return Diagonal::shared_ptr(new Diagonal(sigmas));
}
/* ************************************************************************* */
void Diagonal::print(const string& name) const {
gtsam::print(sigmas_, name + "diagonal sigmas");
}
/* ************************************************************************* */
Vector Diagonal::whiten(const Vector& v) const {
return v.cwiseProduct(invsigmas_);
}
/* ************************************************************************* */
Vector Diagonal::unwhiten(const Vector& v) const {
return v.cwiseProduct(sigmas_);
}
/* ************************************************************************* */
Matrix Diagonal::Whiten(const Matrix& H) const {
return vector_scale(invsigmas(), H);
}
/* ************************************************************************* */
void Diagonal::WhitenInPlace(Matrix& H) const {
vector_scale_inplace(invsigmas(), H);
}
/* ************************************************************************* */
void Diagonal::WhitenInPlace(Eigen::Block<Matrix> H) const {
H = invsigmas().asDiagonal() * H;
}
/* ************************************************************************* */
// Constrained
/* ************************************************************************* */
namespace internal {
// switch precisions and invsigmas to finite value
// TODO: why?? And, why not just ask s==0.0 below ?
static void fix(const Vector& sigmas, Vector& precisions, Vector& invsigmas) {
for (Vector::Index i = 0; i < sigmas.size(); ++i)
if (!std::isfinite(1. / sigmas[i])) {
precisions[i] = 0.0;
invsigmas[i] = 0.0;
}
}
}
/* ************************************************************************* */
Constrained::Constrained(const Vector& sigmas)
: Diagonal(sigmas), mu_(repeat(sigmas.size(), 1000.0)) {
internal::fix(sigmas, precisions_, invsigmas_);
}
/* ************************************************************************* */
Constrained::Constrained(const Vector& mu, const Vector& sigmas)
: Diagonal(sigmas), mu_(mu) {
internal::fix(sigmas, precisions_, invsigmas_);
}
/* ************************************************************************* */
Constrained::shared_ptr Constrained::MixedSigmas(const Vector& mu,
const Vector& sigmas) {
return shared_ptr(new Constrained(mu, sigmas));
}
/* ************************************************************************* */
bool Constrained::constrained(size_t i) const {
// TODO why not just check sigmas_[i]==0.0 ?
return !std::isfinite(1./sigmas_[i]);
}
/* ************************************************************************* */
void Constrained::print(const std::string& name) const {
gtsam::print(sigmas_, name + "constrained sigmas");
gtsam::print(mu_, name + "constrained mu");
}
/* ************************************************************************* */
Vector Constrained::whiten(const Vector& v) const {
// If sigmas[i] is not 0 then divide v[i] by sigmas[i], as usually done in
// other normal Gaussian noise model. Otherwise, sigmas[i] = 0 indicating
// a hard constraint, we don't do anything.
const Vector& a = v;
const Vector& b = sigmas_;
size_t n = a.size();
assert (b.size()==a.size());
Vector c(n);
for( size_t i = 0; i < n; i++ ) {
const double& ai = a(i), bi = b(i);
c(i) = (bi==0.0) ? ai : ai/bi; // NOTE: not ediv_()
}
return c;
}
/* ************************************************************************* */
double Constrained::distance(const Vector& v) const {
Vector w = Diagonal::whiten(v); // get noisemodel for constrained elements
for (size_t i=0; i<dim_; ++i) // add mu weights on constrained variables
if (constrained(i)) // whiten makes constrained variables zero
w[i] = v[i] * sqrt(mu_[i]); // TODO: may want to store sqrt rather than rebuild
return w.dot(w);
}
/* ************************************************************************* */
Matrix Constrained::Whiten(const Matrix& H) const {
// selective scaling
return vector_scale(invsigmas(), H, true);
}
/* ************************************************************************* */
void Constrained::WhitenInPlace(Matrix& H) const {
for (DenseIndex i=0; i<(DenseIndex)dim_; ++i)
if (!constrained(i)) // if constrained, leave row of H as is
H.row(i) *= invsigmas_(i);
}
/* ************************************************************************* */
void Constrained::WhitenInPlace(Eigen::Block<Matrix> H) const {
for (DenseIndex i=0; i<(DenseIndex)dim_; ++i)
if (!constrained(i)) // if constrained, leave row of H as is
H.row(i) *= invsigmas_(i);
}
/* ************************************************************************* */
Constrained::shared_ptr Constrained::unit() const {
Vector sigmas = ones(dim());
for (size_t i=0; i<dim(); ++i)
if (constrained(i))
sigmas(i) = 0.0;
return MixedSigmas(mu_, sigmas);
}
/* ************************************************************************* */
// Special version of QR for Constrained calls slower but smarter code
// that deals with possibly zero sigmas
// It is Gram-Schmidt orthogonalization rather than Householder
// Previously Diagonal::QR
SharedDiagonal Constrained::QR(Matrix& Ab) const {
bool verbose = false;
if (verbose) cout << "\nStarting Constrained::QR" << endl;
// get size(A) and maxRank
size_t m = Ab.rows(), n = Ab.cols()-1;
size_t maxRank = min(m,n);
// create storage for [R d]
typedef boost::tuple<size_t, Vector, double> Triple;
list<Triple> Rd;
Vector pseudo(m); // allocate storage for pseudo-inverse
Vector invsigmas = sigmas_.array().inverse();
Vector weights = invsigmas.array().square(); // calculate weights once
// We loop over all columns, because the columns that can be eliminated
// are not necessarily contiguous. For each one, estimate the corresponding
// scalar variable x as d-rS, with S the separator (remaining columns).
// Then update A and b by substituting x with d-rS, zero-ing out x's column.
for (size_t j=0; j<n; ++j) {
// extract the first column of A
Vector a = Ab.col(j);
// Calculate weighted pseudo-inverse and corresponding precision
gttic(constrained_QR_weightedPseudoinverse);
double precision = weightedPseudoinverse(a, weights, pseudo);
gttoc(constrained_QR_weightedPseudoinverse);
// If precision is zero, no information on this column
// This is actually not limited to constraints, could happen in Gaussian::QR
// In that case, we're probably hosed. TODO: make sure Householder is rank-revealing
if (precision < 1e-8) continue;
gttic(constrained_QR_create_rd);
// create solution [r d], rhs is automatically r(n)
Vector rd(n+1); // uninitialized !
rd(j)=1.0; // put 1 on diagonal
for (size_t j2=j+1; j2<n+1; ++j2) // and fill in remainder with dot-products
rd(j2) = pseudo.dot(Ab.col(j2));
gttoc(constrained_QR_create_rd);
// construct solution (r, d, sigma)
Rd.push_back(boost::make_tuple(j, rd, precision));
// exit after rank exhausted
if (Rd.size()>=maxRank) break;
// update Ab, expensive, using outer product
gttic(constrained_QR_update_Ab);
Ab.middleCols(j+1,n-j) -= a * rd.segment(j+1, n-j).transpose();
gttoc(constrained_QR_update_Ab);
}
// Create storage for precisions
Vector precisions(Rd.size());
gttic(constrained_QR_write_back_into_Ab);
// Write back result in Ab, imperative as we are
// TODO: test that is correct if a column was skipped !!!!
size_t i = 0; // start with first row
bool mixed = false;
BOOST_FOREACH(const Triple& t, Rd) {
const size_t& j = t.get<0>();
const Vector& rd = t.get<1>();
precisions(i) = t.get<2>();
if (constrained(i)) mixed = true;
for (size_t j2=0; j2<j; ++j2)
Ab(i,j2) = 0.0; // fill in zeros below diagonal anway
for (size_t j2=j; j2<n+1; ++j2)
Ab(i,j2) = rd(j2);
i+=1;
}
gttoc(constrained_QR_write_back_into_Ab);
// Must include mu, as the defaults might be higher, resulting in non-convergence
return mixed ? Constrained::MixedPrecisions(mu_, precisions) : Diagonal::Precisions(precisions);
}
/* ************************************************************************* */
// Isotropic
/* ************************************************************************* */
Isotropic::shared_ptr Isotropic::Sigma(size_t dim, double sigma, bool smart) {
if (smart && fabs(sigma-1.0)<1e-9) return Unit::Create(dim);
return shared_ptr(new Isotropic(dim, sigma));
}
/* ************************************************************************* */
Isotropic::shared_ptr Isotropic::Variance(size_t dim, double variance, bool smart) {
if (smart && fabs(variance-1.0)<1e-9) return Unit::Create(dim);
return shared_ptr(new Isotropic(dim, sqrt(variance)));
}
/* ************************************************************************* */
void Isotropic::print(const string& name) const {
cout << name << "isotropic sigma " << " " << sigma_ << endl;
}
/* ************************************************************************* */
double Isotropic::Mahalanobis(const Vector& v) const {
return v.dot(v) * invsigma_ * invsigma_;
}
/* ************************************************************************* */
Vector Isotropic::whiten(const Vector& v) const {
return v * invsigma_;
}
/* ************************************************************************* */
Vector Isotropic::unwhiten(const Vector& v) const {
return v * sigma_;
}
/* ************************************************************************* */
Matrix Isotropic::Whiten(const Matrix& H) const {
return invsigma_ * H;
}
/* ************************************************************************* */
void Isotropic::WhitenInPlace(Matrix& H) const {
H *= invsigma_;
}
/* ************************************************************************* */
void Isotropic::WhitenInPlace(Eigen::Block<Matrix> H) const {
H *= invsigma_;
}
/* ************************************************************************* */
// Unit
/* ************************************************************************* */
void Unit::print(const std::string& name) const {
cout << name << "unit (" << dim_ << ") " << endl;
}
/* ************************************************************************* */
// M-Estimator
/* ************************************************************************* */
namespace mEstimator {
/** produce a weight vector according to an error vector and the implemented
* robust function */
Vector Base::weight(const Vector &error) const {
const size_t n = error.rows();
Vector w(n);
for ( size_t i = 0 ; i < n ; ++i )
w(i) = weight(error(i));
return w;
}
/** The following three functions reweight block matrices and a vector
* according to their weight implementation */
void Base::reweight(Vector& error) const {
if(reweight_ == Block) {
const double w = sqrtWeight(error.norm());
error *= w;
} else {
error.array() *= weight(error).cwiseSqrt().array();
}
}
/** Reweight n block matrices with one error vector */
void Base::reweight(vector<Matrix> &A, Vector &error) const {
if ( reweight_ == Block ) {
const double w = sqrtWeight(error.norm());
BOOST_FOREACH(Matrix& Aj, A) {
Aj *= w;
}
error *= w;
}
else {
const Vector W = sqrtWeight(error);
BOOST_FOREACH(Matrix& Aj, A) {
vector_scale_inplace(W,Aj);
}
error = W.cwiseProduct(error);
}
}
/** Reweight one block matrix with one error vector */
void Base::reweight(Matrix &A, Vector &error) const {
if ( reweight_ == Block ) {
const double w = sqrtWeight(error.norm());
A *= w;
error *= w;
}
else {
const Vector W = sqrtWeight(error);
vector_scale_inplace(W,A);
error = W.cwiseProduct(error);
}
}
/** Reweight two block matrix with one error vector */
void Base::reweight(Matrix &A1, Matrix &A2, Vector &error) const {
if ( reweight_ == Block ) {
const double w = sqrtWeight(error.norm());
A1 *= w;
A2 *= w;
error *= w;
}
else {
const Vector W = sqrtWeight(error);
vector_scale_inplace(W,A1);
vector_scale_inplace(W,A2);
error = W.cwiseProduct(error);
}
}
/** Reweight three block matrix with one error vector */
void Base::reweight(Matrix &A1, Matrix &A2, Matrix &A3, Vector &error) const {
if ( reweight_ == Block ) {
const double w = sqrtWeight(error.norm());
A1 *= w;
A2 *= w;
A3 *= w;
error *= w;
}
else {
const Vector W = sqrtWeight(error);
vector_scale_inplace(W,A1);
vector_scale_inplace(W,A2);
vector_scale_inplace(W,A3);
error = W.cwiseProduct(error);
}
}
/* ************************************************************************* */
// Null model
/* ************************************************************************* */
void Null::print(const std::string &s="") const
{ cout << s << "null ()" << endl; }
Null::shared_ptr Null::Create()
{ return shared_ptr(new Null()); }
Fair::Fair(double c, const ReweightScheme reweight)
: Base(reweight), c_(c) {
if ( c_ <= 0 ) {
cout << "mEstimator Fair takes only positive double in constructor. forced to 1.0" << endl;
c_ = 1.0;
}
}
/* ************************************************************************* */
// Fair
/* ************************************************************************* */
double Fair::weight(double error) const
{ return 1.0 / (1.0 + fabs(error)/c_); }
void Fair::print(const std::string &s="") const
{ cout << s << "fair (" << c_ << ")" << endl; }
bool Fair::equals(const Base &expected, double tol) const {
const Fair* p = dynamic_cast<const Fair*> (&expected);
if (p == NULL) return false;
return fabs(c_ - p->c_ ) < tol;
}
Fair::shared_ptr Fair::Create(double c, const ReweightScheme reweight)
{ return shared_ptr(new Fair(c, reweight)); }
/* ************************************************************************* */
// Huber
/* ************************************************************************* */
Huber::Huber(double k, const ReweightScheme reweight)
: Base(reweight), k_(k) {
if ( k_ <= 0 ) {
cout << "mEstimator Huber takes only positive double in constructor. forced to 1.0" << endl;
k_ = 1.0;
}
}
double Huber::weight(double error) const {
return (error < k_) ? (1.0) : (k_ / fabs(error));
}
void Huber::print(const std::string &s="") const {
cout << s << "huber (" << k_ << ")" << endl;
}
bool Huber::equals(const Base &expected, double tol) const {
const Huber* p = dynamic_cast<const Huber*>(&expected);
if (p == NULL) return false;
return fabs(k_ - p->k_) < tol;
}
Huber::shared_ptr Huber::Create(double c, const ReweightScheme reweight) {
return shared_ptr(new Huber(c, reweight));
}
/* ************************************************************************* */
// Cauchy
/* ************************************************************************* */
Cauchy::Cauchy(double k, const ReweightScheme reweight)
: Base(reweight), k_(k) {
if ( k_ <= 0 ) {
cout << "mEstimator Cauchy takes only positive double in constructor. forced to 1.0" << endl;
k_ = 1.0;
}
}
double Cauchy::weight(double error) const {
return k_*k_ / (k_*k_ + error*error);
}
void Cauchy::print(const std::string &s="") const {
cout << s << "cauchy (" << k_ << ")" << endl;
}
bool Cauchy::equals(const Base &expected, double tol) const {
const Cauchy* p = dynamic_cast<const Cauchy*>(&expected);
if (p == NULL) return false;
return fabs(k_ - p->k_) < tol;
}
Cauchy::shared_ptr Cauchy::Create(double c, const ReweightScheme reweight) {
return shared_ptr(new Cauchy(c, reweight));
}
/* ************************************************************************* */
// Tukey
/* ************************************************************************* */
Tukey::Tukey(double c, const ReweightScheme reweight)
: Base(reweight), c_(c) {
}
double Tukey::weight(double error) const {
if (fabs(error) <= c_) {
double xc2 = (error/c_)*(error/c_);
double one_xc22 = (1.0-xc2)*(1.0-xc2);
return one_xc22;
}
return 0.0;
}
void Tukey::print(const std::string &s="") const {
std::cout << s << ": Tukey (" << c_ << ")" << std::endl;
}
bool Tukey::equals(const Base &expected, double tol) const {
const Tukey* p = dynamic_cast<const Tukey*>(&expected);
if (p == NULL) return false;
return fabs(c_ - p->c_) < tol;
}
Tukey::shared_ptr Tukey::Create(double c, const ReweightScheme reweight) {
return shared_ptr(new Tukey(c, reweight));
}
/* ************************************************************************* */
// Welsh
/* ************************************************************************* */
Welsh::Welsh(double c, const ReweightScheme reweight)
: Base(reweight), c_(c) {
}
double Welsh::weight(double error) const {
double xc2 = (error/c_)*(error/c_);
return std::exp(-xc2);
}
void Welsh::print(const std::string &s="") const {
std::cout << s << ": Welsh (" << c_ << ")" << std::endl;
}
bool Welsh::equals(const Base &expected, double tol) const {
const Welsh* p = dynamic_cast<const Welsh*>(&expected);
if (p == NULL) return false;
return fabs(c_ - p->c_) < tol;
}
Welsh::shared_ptr Welsh::Create(double c, const ReweightScheme reweight) {
return shared_ptr(new Welsh(c, reweight));
}
} // namespace mEstimator
/* ************************************************************************* */
// Robust
/* ************************************************************************* */
void Robust::print(const std::string& name) const {
robust_->print(name);
noise_->print(name);
}
bool Robust::equals(const Base& expected, double tol) const {
const Robust* p = dynamic_cast<const Robust*> (&expected);
if (p == NULL) return false;
return noise_->equals(*p->noise_,tol) && robust_->equals(*p->robust_,tol);
}
void Robust::WhitenSystem(Vector& b) const {
noise_->whitenInPlace(b);
robust_->reweight(b);
}
void Robust::WhitenSystem(vector<Matrix>& A, Vector& b) const {
noise_->WhitenSystem(A,b);
robust_->reweight(A,b);
}
void Robust::WhitenSystem(Matrix& A, Vector& b) const {
noise_->WhitenSystem(A,b);
robust_->reweight(A,b);
}
void Robust::WhitenSystem(Matrix& A1, Matrix& A2, Vector& b) const {
noise_->WhitenSystem(A1,A2,b);
robust_->reweight(A1,A2,b);
}
void Robust::WhitenSystem(Matrix& A1, Matrix& A2, Matrix& A3, Vector& b) const{
noise_->WhitenSystem(A1,A2,A3,b);
robust_->reweight(A1,A2,A3,b);
}
Robust::shared_ptr Robust::Create(
const RobustModel::shared_ptr &robust, const NoiseModel::shared_ptr noise){
return shared_ptr(new Robust(robust,noise));
}
/* ************************************************************************* */
}
} // gtsam