835 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			Plaintext
		
	
	
			
		
		
	
	
			835 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			Plaintext
		
	
	
| #LyX 2.3 created this file. For more info see http://www.lyx.org/
 | |
| \lyxformat 544
 | |
| \begin_document
 | |
| \begin_header
 | |
| \save_transient_properties true
 | |
| \origin unavailable
 | |
| \textclass article
 | |
| \use_default_options true
 | |
| \maintain_unincluded_children false
 | |
| \language english
 | |
| \language_package default
 | |
| \inputencoding auto
 | |
| \fontencoding global
 | |
| \font_roman "default" "default"
 | |
| \font_sans "default" "default"
 | |
| \font_typewriter "default" "default"
 | |
| \font_math "auto" "auto"
 | |
| \font_default_family default
 | |
| \use_non_tex_fonts false
 | |
| \font_sc false
 | |
| \font_osf false
 | |
| \font_sf_scale 100 100
 | |
| \font_tt_scale 100 100
 | |
| \use_microtype false
 | |
| \use_dash_ligatures true
 | |
| \graphics default
 | |
| \default_output_format default
 | |
| \output_sync 0
 | |
| \bibtex_command default
 | |
| \index_command default
 | |
| \paperfontsize 11
 | |
| \spacing single
 | |
| \use_hyperref false
 | |
| \papersize default
 | |
| \use_geometry true
 | |
| \use_package amsmath 1
 | |
| \use_package amssymb 1
 | |
| \use_package cancel 1
 | |
| \use_package esint 1
 | |
| \use_package mathdots 1
 | |
| \use_package mathtools 1
 | |
| \use_package mhchem 1
 | |
| \use_package stackrel 1
 | |
| \use_package stmaryrd 1
 | |
| \use_package undertilde 1
 | |
| \cite_engine basic
 | |
| \cite_engine_type default
 | |
| \biblio_style plain
 | |
| \use_bibtopic false
 | |
| \use_indices false
 | |
| \paperorientation portrait
 | |
| \suppress_date false
 | |
| \justification true
 | |
| \use_refstyle 1
 | |
| \use_minted 0
 | |
| \index Index
 | |
| \shortcut idx
 | |
| \color #008000
 | |
| \end_index
 | |
| \leftmargin 1in
 | |
| \topmargin 1in
 | |
| \rightmargin 1in
 | |
| \bottommargin 1in
 | |
| \secnumdepth 3
 | |
| \tocdepth 3
 | |
| \paragraph_separation indent
 | |
| \paragraph_indentation default
 | |
| \is_math_indent 0
 | |
| \math_numbering_side default
 | |
| \quotes_style english
 | |
| \dynamic_quotes 0
 | |
| \papercolumns 1
 | |
| \papersides 1
 | |
| \paperpagestyle default
 | |
| \tracking_changes false
 | |
| \output_changes false
 | |
| \html_math_output 0
 | |
| \html_css_as_file 0
 | |
| \html_be_strict false
 | |
| \end_header
 | |
| 
 | |
| \begin_body
 | |
| 
 | |
| \begin_layout Title
 | |
| Hybrid Inference
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Author
 | |
| Frank Dellaert
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Date
 | |
| January 2023
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Section
 | |
| Hybrid Conditionals
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Standard
 | |
| Here we develop a hybrid conditional density, on continuous variables (typically
 | |
|  a measurement 
 | |
| \begin_inset Formula $x$
 | |
| \end_inset
 | |
| 
 | |
| ), given a mix of continuous variables 
 | |
| \begin_inset Formula $y$
 | |
| \end_inset
 | |
| 
 | |
|  and discrete variables 
 | |
| \begin_inset Formula $m$
 | |
| \end_inset
 | |
| 
 | |
| .
 | |
|  We start by reviewing a Gaussian conditional density and its invariants
 | |
|  (relationship between density, error, and normalization constant), and
 | |
|  then work out what needs to happen for a hybrid version.
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Subsubsection*
 | |
| GaussianConditional
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Standard
 | |
| A 
 | |
| \emph on
 | |
| GaussianConditional
 | |
| \emph default
 | |
|  is a properly normalized, multivariate Gaussian conditional density:
 | |
| \begin_inset Formula 
 | |
| \[
 | |
| P(x|y)=\frac{1}{\sqrt{|2\pi\Sigma|}}\exp\left\{ -\frac{1}{2}\|Rx+Sy-d\|_{\Sigma}^{2}\right\} 
 | |
| \]
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| where 
 | |
| \begin_inset Formula $R$
 | |
| \end_inset
 | |
| 
 | |
|  is square and upper-triangular.
 | |
|  For every 
 | |
| \emph on
 | |
| GaussianConditional
 | |
| \emph default
 | |
| , we have the following 
 | |
| \series bold
 | |
| invariant
 | |
| \series default
 | |
| ,
 | |
| \begin_inset Formula 
 | |
| \begin{equation}
 | |
| \log P(x|y)=K_{gc}-E_{gc}(x,y),\label{eq:gc_invariant}
 | |
| \end{equation}
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| with the 
 | |
| \series bold
 | |
| log-normalization constant
 | |
| \series default
 | |
|  
 | |
| \begin_inset Formula $K_{gc}$
 | |
| \end_inset
 | |
| 
 | |
|  equal to
 | |
| \begin_inset Formula 
 | |
| \begin{equation}
 | |
| K_{gc}=\log\frac{1}{\sqrt{|2\pi\Sigma|}}\label{eq:log_constant}
 | |
| \end{equation}
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
|  and the 
 | |
| \series bold
 | |
| error
 | |
| \series default
 | |
|  
 | |
| \begin_inset Formula $E_{gc}(x,y)$
 | |
| \end_inset
 | |
| 
 | |
|  equal to the negative log-density, up to a constant: 
 | |
| \begin_inset Formula 
 | |
| \begin{equation}
 | |
| E_{gc}(x,y)=\frac{1}{2}\|Rx+Sy-d\|_{\Sigma}^{2}.\label{eq:gc_error}
 | |
| \end{equation}
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| .
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Subsubsection*
 | |
| HybridGaussianConditional
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Standard
 | |
| A 
 | |
| \emph on
 | |
| HybridGaussianConditional
 | |
| \emph default
 | |
|  (maybe to be renamed to 
 | |
| \emph on
 | |
| HybridGaussianConditionalComponent
 | |
| \emph default
 | |
| ) just indexes into a number of 
 | |
| \emph on
 | |
| GaussianConditional
 | |
| \emph default
 | |
|  instances, that are each properly normalized:
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Standard
 | |
| \begin_inset Formula 
 | |
| \[
 | |
| P(x|y,m)=P_{m}(x|y).
 | |
| \]
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| We store one 
 | |
| \emph on
 | |
| GaussianConditional
 | |
| \emph default
 | |
|  
 | |
| \begin_inset Formula $P_{m}(x|y)$
 | |
| \end_inset
 | |
| 
 | |
|  for every possible assignment 
 | |
| \begin_inset Formula $m$
 | |
| \end_inset
 | |
| 
 | |
|  to a set of discrete variables.
 | |
|  As 
 | |
| \emph on
 | |
| HybridGaussianConditional
 | |
| \emph default
 | |
|  is a 
 | |
| \emph on
 | |
| Conditional
 | |
| \emph default
 | |
| , it needs to satisfy the a similar invariant to 
 | |
| \begin_inset CommandInset ref
 | |
| LatexCommand eqref
 | |
| reference "eq:gc_invariant"
 | |
| plural "false"
 | |
| caps "false"
 | |
| noprefix "false"
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| :
 | |
| \begin_inset Formula 
 | |
| \begin{equation}
 | |
| \log P(x|y,m)=K_{gm}-E_{gm}(x,y,m).\label{eq:gm_invariant}
 | |
| \end{equation}
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| If we take the log of 
 | |
| \begin_inset Formula $P(x|y,m)$
 | |
| \end_inset
 | |
| 
 | |
|  we get
 | |
| \begin_inset Formula 
 | |
| \begin{equation}
 | |
| \log P(x|y,m)=\log P_{m}(x|y)=K_{gc}(m)-E_{gcm}(x,y).\label{eq:gm_log}
 | |
| \end{equation}
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| 
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Standard
 | |
| \noindent
 | |
| For conciseness, we will write 
 | |
| \begin_inset Formula $K_{gc}(m)$
 | |
| \end_inset
 | |
| 
 | |
|  as 
 | |
| \begin_inset Formula $K_{gcm}$
 | |
| \end_inset
 | |
| 
 | |
| .
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Standard
 | |
| \SpecialChar allowbreak
 | |
| 
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Standard
 | |
| \noindent
 | |
| The key point here is that 
 | |
| \family roman
 | |
| \series medium
 | |
| \shape up
 | |
| \size normal
 | |
| \emph off
 | |
| \bar no
 | |
| \strikeout off
 | |
| \xout off
 | |
| \uuline off
 | |
| \uwave off
 | |
| \noun off
 | |
| \color none
 | |
| 
 | |
| \begin_inset Formula $K_{gm}$
 | |
| \end_inset
 | |
| 
 | |
| 
 | |
| \family default
 | |
| \series default
 | |
| \shape default
 | |
| \size default
 | |
| \emph default
 | |
| \bar default
 | |
| \strikeout default
 | |
| \xout default
 | |
| \uuline default
 | |
| \uwave default
 | |
| \noun default
 | |
| \color inherit
 | |
|  is the log-normalization constant for the complete 
 | |
| \emph on
 | |
| HybridGaussianConditional
 | |
| \emph default
 | |
|  across all values of 
 | |
| \begin_inset Formula $m$
 | |
| \end_inset
 | |
| 
 | |
| , and cannot be dependent on the value of 
 | |
| \begin_inset Formula $m$
 | |
| \end_inset
 | |
| 
 | |
| .
 | |
|  In contrast, 
 | |
| \begin_inset Formula $K_{gcm}$
 | |
| \end_inset
 | |
| 
 | |
|  is the log-normalization constant for a specific 
 | |
| \emph on
 | |
| GaussianConditional 
 | |
| \emph default
 | |
| mode (thus dependent on 
 | |
| \begin_inset Formula $m$
 | |
| \end_inset
 | |
| 
 | |
| ) and can have differing values based on the covariance matrices for each
 | |
|  mode.
 | |
|  Thus to obtain a constant 
 | |
| \begin_inset Formula $K_{gm}$
 | |
| \end_inset
 | |
| 
 | |
|  which satisfies the invariant, we need to specify 
 | |
| \begin_inset Formula $E_{gm}(x,y,m)$
 | |
| \end_inset
 | |
| 
 | |
|  accordingly.
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Standard
 | |
| \SpecialChar allowbreak
 | |
| 
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Standard
 | |
| \noindent
 | |
| By equating 
 | |
| \begin_inset CommandInset ref
 | |
| LatexCommand eqref
 | |
| reference "eq:gm_invariant"
 | |
| plural "false"
 | |
| caps "false"
 | |
| noprefix "false"
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
|  and 
 | |
| \begin_inset CommandInset ref
 | |
| LatexCommand eqref
 | |
| reference "eq:gm_log"
 | |
| plural "false"
 | |
| caps "false"
 | |
| noprefix "false"
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| , we see that this can be achieved by defining the error 
 | |
| \begin_inset Formula $E_{gm}(x,y,m)$
 | |
| \end_inset
 | |
| 
 | |
|  as
 | |
| \begin_inset Formula 
 | |
| \begin{equation}
 | |
| E_{gm}(x,y,m)=E_{gcm}(x,y)+K_{gm}-K_{gcm}\label{eq:gm_error}
 | |
| \end{equation}
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| where choose 
 | |
| \begin_inset Formula $K_{gm}=\max K_{gcm}$
 | |
| \end_inset
 | |
| 
 | |
| , as then the error will always be positive.
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Section
 | |
| Hybrid Factors
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Standard
 | |
| In GTSAM, we typically condition on known measurements, and factors encode
 | |
|  the resulting negative log-likelihood of the unknown variables 
 | |
| \begin_inset Formula $y$
 | |
| \end_inset
 | |
| 
 | |
|  given the measurements 
 | |
| \begin_inset Formula $x$
 | |
| \end_inset
 | |
| 
 | |
| .
 | |
|  We review how a Gaussian conditional density is converted into a Gaussian
 | |
|  factor, and then develop a hybrid version satisfying the correct invariants
 | |
|  as well.
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Subsubsection*
 | |
| JacobianFactor
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Standard
 | |
| A 
 | |
| \emph on
 | |
| JacobianFactor
 | |
| \emph default
 | |
|  typically results from a 
 | |
| \emph on
 | |
| GaussianConditional
 | |
| \emph default
 | |
|  by having known values 
 | |
| \begin_inset Formula $\bar{x}$
 | |
| \end_inset
 | |
| 
 | |
|  for the 
 | |
| \begin_inset Quotes eld
 | |
| \end_inset
 | |
| 
 | |
| measurement
 | |
| \begin_inset Quotes erd
 | |
| \end_inset
 | |
| 
 | |
|  
 | |
| \begin_inset Formula $x$
 | |
| \end_inset
 | |
| 
 | |
| :
 | |
| \begin_inset Formula 
 | |
| \begin{equation}
 | |
| L(y)\propto P(\bar{x}|y)\label{eq:likelihood}
 | |
| \end{equation}
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| In GTSAM factors represent the negative log-likelihood 
 | |
| \begin_inset Formula $E_{jf}(y)$
 | |
| \end_inset
 | |
| 
 | |
|  and hence we have
 | |
| \begin_inset Formula 
 | |
| \[
 | |
| E_{jf}(y)=-\log L(y)=C-\log P(\bar{x}|y),
 | |
| \]
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| with 
 | |
| \begin_inset Formula $C$
 | |
| \end_inset
 | |
| 
 | |
|  the log of the proportionality constant in 
 | |
| \begin_inset CommandInset ref
 | |
| LatexCommand eqref
 | |
| reference "eq:likelihood"
 | |
| plural "false"
 | |
| caps "false"
 | |
| noprefix "false"
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| .
 | |
|  Substituting in 
 | |
| \begin_inset Formula $\log P(\bar{x}|y)$
 | |
| \end_inset
 | |
| 
 | |
|  from the invariant 
 | |
| \begin_inset CommandInset ref
 | |
| LatexCommand eqref
 | |
| reference "eq:gc_invariant"
 | |
| plural "false"
 | |
| caps "false"
 | |
| noprefix "false"
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
|  we obtain
 | |
| \begin_inset Formula 
 | |
| \[
 | |
| E_{jf}(y)=C-K_{gc}+E_{gc}(\bar{x},y).
 | |
| \]
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| The 
 | |
| \emph on
 | |
| likelihood
 | |
| \emph default
 | |
|  function in 
 | |
| \emph on
 | |
| GaussianConditional
 | |
| \emph default
 | |
|  chooses 
 | |
| \begin_inset Formula $C=K_{gc}$
 | |
| \end_inset
 | |
| 
 | |
| , and the 
 | |
| \emph on
 | |
| JacobianFactor
 | |
| \emph default
 | |
|  does not store any constant; it just implements:
 | |
| \begin_inset Formula 
 | |
| \[
 | |
| E_{jf}(y)=E_{gc}(\bar{x},y)=\frac{1}{2}\|R\bar{x}+Sy-d\|_{\Sigma}^{2}=\frac{1}{2}\|Ay-b\|_{\Sigma}^{2}
 | |
| \]
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| with 
 | |
| \begin_inset Formula $A=S$
 | |
| \end_inset
 | |
| 
 | |
|  and 
 | |
| \begin_inset Formula $b=d-R\bar{x}$
 | |
| \end_inset
 | |
| 
 | |
| .
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Subsubsection*
 | |
| HybridGaussianFactor
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Standard
 | |
| Analogously, a 
 | |
| \emph on
 | |
| HybridGaussianFactor
 | |
| \emph default
 | |
|  typically results from a HybridGaussianConditional by having known values 
 | |
| \begin_inset Formula $\bar{x}$
 | |
| \end_inset
 | |
| 
 | |
|  for the 
 | |
| \begin_inset Quotes eld
 | |
| \end_inset
 | |
| 
 | |
| measurement
 | |
| \begin_inset Quotes erd
 | |
| \end_inset
 | |
| 
 | |
|  
 | |
| \begin_inset Formula $x$
 | |
| \end_inset
 | |
| 
 | |
| :
 | |
| \begin_inset Formula 
 | |
| \[
 | |
| L(y,m)\propto P(\bar{x}|y,m).
 | |
| \]
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| We will similarly implement the negative log-likelihood 
 | |
| \begin_inset Formula $E_{mf}(y,m)$
 | |
| \end_inset
 | |
| 
 | |
| :
 | |
| \begin_inset Formula 
 | |
| \[
 | |
| E_{mf}(y,m)=-\log L(y,m)=C-\log P(\bar{x}|y,m).
 | |
| \]
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| Since we know the log-density from the invariant 
 | |
| \begin_inset CommandInset ref
 | |
| LatexCommand eqref
 | |
| reference "eq:gm_invariant"
 | |
| plural "false"
 | |
| caps "false"
 | |
| noprefix "false"
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| , we obtain
 | |
| \begin_inset Formula 
 | |
| \[
 | |
| \log P(\bar{x}|y,m)=K_{gm}-E_{gm}(\bar{x},y,m),
 | |
| \]
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
|  and hence
 | |
| \begin_inset Formula 
 | |
| \[
 | |
| E_{mf}(y,m)=C+E_{gm}(\bar{x},y,m)-K_{gm}.
 | |
| \]
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| Substituting in 
 | |
| \begin_inset CommandInset ref
 | |
| LatexCommand eqref
 | |
| reference "eq:gm_error"
 | |
| plural "false"
 | |
| caps "false"
 | |
| noprefix "false"
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
|  we finally have an expression where 
 | |
| \begin_inset Formula $K_{gm}$
 | |
| \end_inset
 | |
| 
 | |
|  canceled out, but we have a dependence on the individual component constants
 | |
|  
 | |
| \begin_inset Formula $K_{gcm}$
 | |
| \end_inset
 | |
| 
 | |
| :
 | |
| \begin_inset Formula 
 | |
| \begin{equation}
 | |
| E_{mf}(y,m)=C+E_{gcm}(\bar{x},y)-K_{gcm}\label{eq:mixture_factor}
 | |
| \end{equation}
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| Unfortunately, we can no longer choose 
 | |
| \begin_inset Formula $C$
 | |
| \end_inset
 | |
| 
 | |
|  independently from 
 | |
| \begin_inset Formula $m$
 | |
| \end_inset
 | |
| 
 | |
|  to make the constant disappear, since 
 | |
| \begin_inset Formula $C$
 | |
| \end_inset
 | |
| 
 | |
|  has to be a constant applicable across all 
 | |
| \begin_inset Formula $m$
 | |
| \end_inset
 | |
| 
 | |
| .
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Standard
 | |
| \SpecialChar allowbreak
 | |
| 
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Standard
 | |
| \noindent
 | |
| There are two possibilities:
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Enumerate
 | |
| Implement likelihood to yield both a hybrid factor 
 | |
| \emph on
 | |
| and
 | |
| \emph default
 | |
|  a discrete factor.
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Enumerate
 | |
| Hide the constant inside the collection of JacobianFactor instances, which
 | |
|  is the possibility we implement.
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Standard
 | |
| In either case, we implement the mixture factor 
 | |
| \begin_inset Formula $E_{mf}(y,m)$
 | |
| \end_inset
 | |
| 
 | |
|  as a set of 
 | |
| \emph on
 | |
| JacobianFactor
 | |
| \emph default
 | |
|  instances 
 | |
| \begin_inset Formula $E_{mf}(y,m)$
 | |
| \end_inset
 | |
| 
 | |
| , indexed by the discrete assignment 
 | |
| \begin_inset Formula $m$
 | |
| \end_inset
 | |
| 
 | |
| :
 | |
| \begin_inset Formula 
 | |
| \[
 | |
| E_{mf}(y,m)=E_{jfm}(y)=\frac{1}{2}\|A_{m}y-b_{m}\|_{\Sigma_{mfm}}^{2}.
 | |
| \]
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| In GTSAM, we define 
 | |
| \begin_inset Formula $A_{m}$
 | |
| \end_inset
 | |
| 
 | |
|  and 
 | |
| \begin_inset Formula $b_{m}$
 | |
| \end_inset
 | |
| 
 | |
|  strategically to make the 
 | |
| \emph on
 | |
| JacobianFactor
 | |
| \emph default
 | |
|  compute the constant, as well:
 | |
| \begin_inset Formula 
 | |
| \[
 | |
| \frac{1}{2}\|A_{m}y-b_{m}\|_{\Sigma_{mfm}}^{2}=C+E_{gcm}(\bar{x},y)-K_{gcm}.
 | |
| \]
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| Substituting in the definition 
 | |
| \begin_inset CommandInset ref
 | |
| LatexCommand eqref
 | |
| reference "eq:gc_error"
 | |
| plural "false"
 | |
| caps "false"
 | |
| noprefix "false"
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
|  for 
 | |
| \begin_inset Formula $E_{gcm}(\bar{x},y)$
 | |
| \end_inset
 | |
| 
 | |
|  we need
 | |
| \begin_inset Formula 
 | |
| \[
 | |
| \frac{1}{2}\|A_{m}y-b_{m}\|_{\Sigma_{mfm}}^{2}=C+\frac{1}{2}\|R_{m}\bar{x}+S_{m}y-d_{m}\|_{\Sigma_{m}}^{2}-K_{gcm}
 | |
| \]
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| which can achieved by setting
 | |
| \begin_inset Formula 
 | |
| \[
 | |
| A_{m}=\left[\begin{array}{c}
 | |
| S_{m}\\
 | |
| 0
 | |
| \end{array}\right],~b_{m}=\left[\begin{array}{c}
 | |
| d_{m}-R_{m}\bar{x}\\
 | |
| c_{m}
 | |
| \end{array}\right],~\Sigma_{mfm}=\left[\begin{array}{cc}
 | |
| \Sigma_{m}\\
 | |
|  & 1
 | |
| \end{array}\right]
 | |
| \]
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| and setting the mode-dependent scalar 
 | |
| \begin_inset Formula $c_{m}$
 | |
| \end_inset
 | |
| 
 | |
|  such that 
 | |
| \begin_inset Formula $c_{m}^{2}=C-K_{gcm}$
 | |
| \end_inset
 | |
| 
 | |
| .
 | |
|  This can be achieved by 
 | |
| \begin_inset Formula $C=\max K_{gcm}=K_{gm}$
 | |
| \end_inset
 | |
| 
 | |
|  and 
 | |
| \begin_inset Formula $c_{m}=\sqrt{2(C-K_{gcm})}$
 | |
| \end_inset
 | |
| 
 | |
| .
 | |
|  Note that in case that all constants 
 | |
| \begin_inset Formula $K_{gcm}$
 | |
| \end_inset
 | |
| 
 | |
|  are equal, we can just use 
 | |
| \begin_inset Formula $C=K_{gm}$
 | |
| \end_inset
 | |
| 
 | |
|  and
 | |
| \begin_inset Formula 
 | |
| \[
 | |
| A_{m}=S_{m},~b_{m}=d_{m}-R_{m}\bar{x},~\Sigma_{mfm}=\Sigma_{m}
 | |
| \]
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| as before.
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Standard
 | |
| In summary, we have
 | |
| \begin_inset Formula 
 | |
| \begin{equation}
 | |
| E_{mf}(y,m)=\frac{1}{2}\|A_{m}y-b_{m}\|_{\Sigma_{mfm}}^{2}=E_{gcm}(\bar{x},y)+K_{gm}-K_{gcm}.\label{eq:mf_invariant}
 | |
| \end{equation}
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| which is identical to the HybridGaussianConditional error 
 | |
| \begin_inset CommandInset ref
 | |
| LatexCommand eqref
 | |
| reference "eq:gm_error"
 | |
| plural "false"
 | |
| caps "false"
 | |
| noprefix "false"
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| .
 | |
| \end_layout
 | |
| 
 | |
| \end_body
 | |
| \end_document
 |