gtsam/gtsam/nonlinear/ISAM2.cpp

815 lines
31 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file ISAM2.cpp
* @brief Incremental update functionality (ISAM2) for BayesTree, with fluid
* relinearization.
* @author Michael Kaess, Richard Roberts, Frank Dellaert
*/
#include <gtsam/nonlinear/ISAM2-impl.h>
#include <gtsam/nonlinear/ISAM2.h>
#include <gtsam/nonlinear/ISAM2Result.h>
#include <gtsam/base/debug.h>
#include <gtsam/base/timing.h>
#include <gtsam/inference/BayesTree-inst.h>
#include <gtsam/nonlinear/LinearContainerFactor.h>
#include <algorithm>
#include <map>
#include <utility>
using namespace std;
namespace gtsam {
// Instantiate base class
template class BayesTree<ISAM2Clique>;
/* ************************************************************************* */
ISAM2::ISAM2(const ISAM2Params& params) : params_(params), update_count_(0) {
if (params_.optimizationParams.type() == typeid(ISAM2DoglegParams))
doglegDelta_ =
boost::get<ISAM2DoglegParams>(params_.optimizationParams).initialDelta;
}
/* ************************************************************************* */
ISAM2::ISAM2() : update_count_(0) {
if (params_.optimizationParams.type() == typeid(ISAM2DoglegParams))
doglegDelta_ =
boost::get<ISAM2DoglegParams>(params_.optimizationParams).initialDelta;
}
/* ************************************************************************* */
bool ISAM2::equals(const ISAM2& other, double tol) const {
return Base::equals(other, tol) && theta_.equals(other.theta_, tol) &&
variableIndex_.equals(other.variableIndex_, tol) &&
nonlinearFactors_.equals(other.nonlinearFactors_, tol) &&
fixedVariables_ == other.fixedVariables_;
}
/* ************************************************************************* */
GaussianFactorGraph ISAM2::relinearizeAffectedFactors(
const ISAM2UpdateParams& updateParams, const FastList<Key>& affectedKeys,
const KeySet& relinKeys) {
gttic(relinearizeAffectedFactors);
FactorIndexSet candidates =
UpdateImpl::GetAffectedFactors(affectedKeys, variableIndex_);
gttic(affectedKeysSet);
// for fast lookup below
KeySet affectedKeysSet;
affectedKeysSet.insert(affectedKeys.begin(), affectedKeys.end());
gttoc(affectedKeysSet);
gttic(check_candidates_and_linearize);
GaussianFactorGraph linearized;
for (const FactorIndex idx : candidates) {
bool inside = true;
bool useCachedLinear = params_.cacheLinearizedFactors;
for (Key key : nonlinearFactors_[idx]->keys()) {
if (affectedKeysSet.find(key) == affectedKeysSet.end()) {
inside = false;
break;
}
if (useCachedLinear && relinKeys.find(key) != relinKeys.end())
useCachedLinear = false;
}
if (inside) {
if (useCachedLinear) {
#ifdef GTSAM_EXTRA_CONSISTENCY_CHECKS
assert(linearFactors_[idx]);
assert(linearFactors_[idx]->keys() == nonlinearFactors_[idx]->keys());
#endif
linearized.push_back(linearFactors_[idx]);
} else {
auto linearFactor = nonlinearFactors_[idx]->linearize(theta_);
linearized.push_back(linearFactor);
if (params_.cacheLinearizedFactors) {
#ifdef GTSAM_EXTRA_CONSISTENCY_CHECKS
assert(linearFactors_[idx]->keys() == linearFactor->keys());
#endif
linearFactors_[idx] = linearFactor;
}
}
}
}
gttoc(check_candidates_and_linearize);
return linearized;
}
/* ************************************************************************* */
void ISAM2::recalculate(const ISAM2UpdateParams& updateParams,
const KeySet& relinKeys, ISAM2Result* result) {
gttic(recalculate);
UpdateImpl::LogRecalculateKeys(*result);
if (!result->markedKeys.empty() || !result->observedKeys.empty()) {
// Remove top of Bayes tree and convert to a factor graph:
// (a) For each affected variable, remove the corresponding clique and all
// parents up to the root. (b) Store orphaned sub-trees \BayesTree_{O} of
// removed cliques.
GaussianBayesNet affectedBayesNet;
Cliques orphans;
this->removeTop(
KeyVector(result->markedKeys.begin(), result->markedKeys.end()),
&affectedBayesNet, &orphans);
// FactorGraph<GaussianFactor> factors(affectedBayesNet);
// bug was here: we cannot reuse the original factors, because then the
// cached factors get messed up [all the necessary data is actually
// contained in the affectedBayesNet, including what was passed in from the
// boundaries, so this would be correct; however, in the process we also
// generate new cached_ entries that will be wrong (ie. they don't contain
// what would be passed up at a certain point if batch elimination was done,
// but that's what we need); we could choose not to update cached_ from
// here, but then the new information (and potentially different variable
// ordering) is not reflected in the cached_ values which again will be
// wrong] so instead we have to retrieve the original linearized factors AND
// add the cached factors from the boundary
// ordering provides all keys in conditionals, there cannot be others
// because path to root included
gttic(affectedKeys);
FastList<Key> affectedKeys;
for (const auto& conditional : affectedBayesNet)
affectedKeys.insert(affectedKeys.end(), conditional->beginFrontals(),
conditional->endFrontals());
gttoc(affectedKeys);
KeySet affectedKeysSet;
static const double kBatchThreshold = 0.65;
if (affectedKeys.size() >= theta_.size() * kBatchThreshold) {
// Do a batch step - reorder and relinearize all variables
recalculateBatch(updateParams, &affectedKeysSet, result);
} else {
recalculateIncremental(updateParams, relinKeys, affectedKeys,
&affectedKeysSet, &orphans, result);
}
// Root clique variables for detailed results
if (result->detail && params_.enableDetailedResults) {
for (const auto& root : roots_)
for (Key var : *root->conditional())
result->detail->variableStatus[var].inRootClique = true;
}
// Update replaced keys mask (accumulates until back-substitution happens)
deltaReplacedMask_.insert(affectedKeysSet.begin(), affectedKeysSet.end());
}
}
/* ************************************************************************* */
void ISAM2::recalculateBatch(const ISAM2UpdateParams& updateParams,
KeySet* affectedKeysSet, ISAM2Result* result) {
gttic(recalculateBatch);
gttic(add_keys);
// copy the keys from the variableIndex_ to the affectedKeysSet
for (const auto& [key, _] : variableIndex_) {
affectedKeysSet->insert(key);
}
// Removed unused keys:
VariableIndex affectedFactorsVarIndex = variableIndex_;
affectedFactorsVarIndex.removeUnusedVariables(result->unusedKeys.begin(),
result->unusedKeys.end());
for (const Key key : result->unusedKeys) {
affectedKeysSet->erase(key);
}
gttoc(add_keys);
gttic(ordering);
Ordering order;
if (updateParams.constrainedKeys) {
order = Ordering::ColamdConstrained(affectedFactorsVarIndex,
*updateParams.constrainedKeys);
} else {
if (theta_.size() > result->observedKeys.size()) {
// Only if some variables are unconstrained
FastMap<Key, int> constraintGroups;
for (Key var : result->observedKeys) constraintGroups[var] = 1;
order = Ordering::ColamdConstrained(affectedFactorsVarIndex,
constraintGroups);
} else {
order = Ordering::Colamd(affectedFactorsVarIndex);
}
}
gttoc(ordering);
gttic(linearize);
auto linearized = nonlinearFactors_.linearize(theta_);
if (params_.cacheLinearizedFactors) linearFactors_ = *linearized;
gttoc(linearize);
gttic(eliminate);
ISAM2BayesTree::shared_ptr bayesTree =
ISAM2JunctionTree(
GaussianEliminationTree(*linearized, affectedFactorsVarIndex, order))
.eliminate(params_.getEliminationFunction())
.first;
gttoc(eliminate);
gttic(insert);
roots_.clear();
roots_.insert(roots_.end(), bayesTree->roots().begin(),
bayesTree->roots().end());
nodes_.clear();
nodes_.insert(bayesTree->nodes().begin(), bayesTree->nodes().end());
gttoc(insert);
result->variablesReeliminated = affectedKeysSet->size();
result->factorsRecalculated = nonlinearFactors_.size();
// Reeliminated keys for detailed results
if (params_.enableDetailedResults) {
for (Key key : theta_.keys()) {
result->detail->variableStatus[key].isReeliminated = true;
}
}
}
/* ************************************************************************* */
void ISAM2::recalculateIncremental(const ISAM2UpdateParams& updateParams,
const KeySet& relinKeys,
const FastList<Key>& affectedKeys,
KeySet* affectedKeysSet, Cliques* orphans,
ISAM2Result* result) {
gttic(recalculateIncremental);
const bool debug = ISDEBUG("ISAM2 recalculate");
// 2. Add the new factors \Factors' into the resulting factor graph
FastList<Key> affectedAndNewKeys;
affectedAndNewKeys.insert(affectedAndNewKeys.end(), affectedKeys.begin(),
affectedKeys.end());
affectedAndNewKeys.insert(affectedAndNewKeys.end(),
result->observedKeys.begin(),
result->observedKeys.end());
GaussianFactorGraph factors =
relinearizeAffectedFactors(updateParams, affectedAndNewKeys, relinKeys);
if (debug) {
factors.print("Relinearized factors: ");
std::cout << "Affected keys: ";
for (const Key key : affectedKeys) {
std::cout << key << " ";
}
std::cout << std::endl;
}
// Reeliminated keys for detailed results
if (params_.enableDetailedResults) {
for (Key key : affectedAndNewKeys) {
result->detail->variableStatus[key].isReeliminated = true;
}
}
result->variablesReeliminated = affectedAndNewKeys.size();
result->factorsRecalculated = factors.size();
gttic(cached);
// Add the cached intermediate results from the boundary of the orphans...
GaussianFactorGraph cachedBoundary =
UpdateImpl::GetCachedBoundaryFactors(*orphans);
if (debug) cachedBoundary.print("Boundary factors: ");
factors.push_back(cachedBoundary);
gttoc(cached);
gttic(orphans);
// Add the orphaned subtrees
for (const auto& orphan : *orphans)
factors +=
std::make_shared<BayesTreeOrphanWrapper<ISAM2::Clique> >(orphan);
gttoc(orphans);
// 3. Re-order and eliminate the factor graph into a Bayes net (Algorithm
// [alg:eliminate]), and re-assemble into a new Bayes tree (Algorithm
// [alg:BayesTree])
gttic(reorder_and_eliminate);
gttic(list_to_set);
// create a partial reordering for the new and contaminated factors
// result->markedKeys are passed in: those variables will be forced to the
// end in the ordering
affectedKeysSet->insert(result->markedKeys.begin(), result->markedKeys.end());
affectedKeysSet->insert(affectedKeys.begin(), affectedKeys.end());
gttoc(list_to_set);
VariableIndex affectedFactorsVarIndex(factors);
gttic(ordering_constraints);
// Create ordering constraints
FastMap<Key, int> constraintGroups;
if (updateParams.constrainedKeys) {
constraintGroups = *updateParams.constrainedKeys;
} else {
constraintGroups = FastMap<Key, int>();
const int group =
result->observedKeys.size() < affectedFactorsVarIndex.size() ? 1 : 0;
for (Key var : result->observedKeys)
constraintGroups.emplace(var, group);
}
// Remove unaffected keys from the constraints
for (FastMap<Key, int>::iterator iter = constraintGroups.begin();
iter != constraintGroups.end();
/*Incremented in loop ++iter*/) {
if (result->unusedKeys.exists(iter->first) ||
!affectedKeysSet->exists(iter->first))
constraintGroups.erase(iter++);
else
++iter;
}
gttoc(ordering_constraints);
// Generate ordering
gttic(Ordering);
const Ordering ordering =
Ordering::ColamdConstrained(affectedFactorsVarIndex, constraintGroups);
gttoc(Ordering);
// Do elimination
GaussianEliminationTree etree(factors, affectedFactorsVarIndex, ordering);
auto bayesTree = ISAM2JunctionTree(etree)
.eliminate(params_.getEliminationFunction())
.first;
gttoc(reorder_and_eliminate);
gttic(reassemble);
roots_.insert(roots_.end(), bayesTree->roots().begin(),
bayesTree->roots().end());
nodes_.insert(bayesTree->nodes().begin(), bayesTree->nodes().end());
gttoc(reassemble);
// 4. The orphans have already been inserted during elimination
}
/* ************************************************************************* */
void ISAM2::addVariables(const Values& newTheta,
ISAM2Result::DetailedResults* detail) {
gttic(addNewVariables);
theta_.insert(newTheta);
if (ISDEBUG("ISAM2 AddVariables")) newTheta.print("The new variables are: ");
// Add zeros into the VectorValues
delta_.insert(newTheta.zeroVectors());
deltaNewton_.insert(newTheta.zeroVectors());
RgProd_.insert(newTheta.zeroVectors());
// New keys for detailed results
if (detail && params_.enableDetailedResults) {
for (Key key : newTheta.keys()) {
detail->variableStatus[key].isNew = true;
}
}
}
/* ************************************************************************* */
void ISAM2::removeVariables(const KeySet& unusedKeys) {
gttic(removeVariables);
variableIndex_.removeUnusedVariables(unusedKeys.begin(), unusedKeys.end());
for (Key key : unusedKeys) {
delta_.erase(key);
deltaNewton_.erase(key);
RgProd_.erase(key);
deltaReplacedMask_.erase(key);
Base::nodes_.unsafe_erase(key);
theta_.erase(key);
fixedVariables_.erase(key);
}
}
/* ************************************************************************* */
ISAM2Result ISAM2::update(
const NonlinearFactorGraph& newFactors, const Values& newTheta,
const FactorIndices& removeFactorIndices,
const std::optional<FastMap<Key, int> >& constrainedKeys,
const std::optional<FastList<Key> >& noRelinKeys,
const std::optional<FastList<Key> >& extraReelimKeys,
bool force_relinearize) {
ISAM2UpdateParams params;
params.constrainedKeys = constrainedKeys;
params.extraReelimKeys = extraReelimKeys;
params.force_relinearize = force_relinearize;
params.noRelinKeys = noRelinKeys;
params.removeFactorIndices = removeFactorIndices;
return update(newFactors, newTheta, params);
}
/* ************************************************************************* */
ISAM2Result ISAM2::update(const NonlinearFactorGraph& newFactors,
const Values& newTheta,
const ISAM2UpdateParams& updateParams) {
gttic(ISAM2_update);
this->update_count_ += 1;
UpdateImpl::LogStartingUpdate(newFactors, *this);
ISAM2Result result(params_.enableDetailedResults);
UpdateImpl update(params_, updateParams);
// Update delta if we need it to check relinearization later
if (update.relinarizationNeeded(update_count_))
updateDelta(updateParams.forceFullSolve);
// 1. Add any new factors \Factors:=\Factors\cup\Factors'.
update.pushBackFactors(newFactors, &nonlinearFactors_, &linearFactors_,
&variableIndex_, &result.newFactorsIndices,
&result.keysWithRemovedFactors);
update.computeUnusedKeys(newFactors, variableIndex_,
result.keysWithRemovedFactors, &result.unusedKeys);
// 2. Initialize any new variables \Theta_{new} and add
// \Theta:=\Theta\cup\Theta_{new}.
addVariables(newTheta, result.details());
if (params_.evaluateNonlinearError)
update.error(nonlinearFactors_, calculateEstimate(), &result.errorBefore);
// 3. Mark linear update
update.gatherInvolvedKeys(newFactors, nonlinearFactors_,
result.keysWithRemovedFactors, &result.markedKeys);
update.updateKeys(result.markedKeys, &result);
KeySet relinKeys;
result.variablesRelinearized = 0;
if (update.relinarizationNeeded(update_count_)) {
// 4. Mark keys in \Delta above threshold \beta:
relinKeys = update.gatherRelinearizeKeys(roots_, delta_, fixedVariables_,
&result.markedKeys);
update.recordRelinearizeDetail(relinKeys, result.details());
if (!relinKeys.empty()) {
// 5. Mark cliques that involve marked variables \Theta_{J} and ancestors.
update.findFluid(roots_, relinKeys, &result.markedKeys, result.details());
// 6. Update linearization point for marked variables:
// \Theta_{J}:=\Theta_{J}+\Delta_{J}.
theta_.retractMasked(delta_, relinKeys);
}
result.variablesRelinearized = result.markedKeys.size();
}
// 7. Linearize new factors
update.linearizeNewFactors(newFactors, theta_, nonlinearFactors_.size(),
result.newFactorsIndices, &linearFactors_);
update.augmentVariableIndex(newFactors, result.newFactorsIndices,
&variableIndex_);
// 8. Redo top of Bayes tree and update data structures
recalculate(updateParams, relinKeys, &result);
if (!result.unusedKeys.empty()) removeVariables(result.unusedKeys);
result.cliques = this->nodes().size();
if (params_.evaluateNonlinearError)
update.error(nonlinearFactors_, calculateEstimate(), &result.errorAfter);
return result;
}
/* ************************************************************************* */
void ISAM2::marginalizeLeaves(
const FastList<Key>& leafKeysList,
FactorIndices* marginalFactorsIndices,
FactorIndices* deletedFactorsIndices) {
// Convert to ordered set
KeySet leafKeys(leafKeysList.begin(), leafKeysList.end());
// Keep track of marginal factors - map from clique to the marginal factors
// that should be incorporated into it, passed up from it's children.
// multimap<sharedClique, GaussianFactor::shared_ptr> marginalFactors;
map<Key, vector<GaussianFactor::shared_ptr> > marginalFactors;
// Keep track of variables removed in subtrees
KeySet leafKeysRemoved;
// Keep track of factors that get summarized by removing cliques
FactorIndexSet factorIndicesToRemove;
// Remove the subtree and throw away the cliques
auto trackingRemoveSubtree = [&](const sharedClique& subtreeRoot) {
const Cliques removedCliques = this->removeSubtree(subtreeRoot);
for (const sharedClique& removedClique : removedCliques) {
auto cg = removedClique->conditional();
marginalFactors.erase(cg->front());
leafKeysRemoved.insert(cg->beginFrontals(), cg->endFrontals());
for (Key frontal : cg->frontals()) {
// Add to factors to remove
const auto& involved = variableIndex_[frontal];
factorIndicesToRemove.insert(involved.begin(), involved.end());
#if !defined(NDEBUG)
// Check for non-leaf keys
if (!leafKeys.exists(frontal))
throw std::runtime_error(
"Requesting to marginalize variables that are not leaves, "
"the ISAM2 object is now in an inconsistent state so should "
"no longer be used.");
#endif
}
}
return removedCliques;
};
// Remove each variable and its subtrees
for (Key j : leafKeys) {
if (!leafKeysRemoved.exists(j)) { // If the index was not already removed
// by removing another subtree
// Traverse up the tree to find the root of the marginalized subtree
sharedClique clique = nodes_[j];
while (clique->parent_.use_count() != 0) {
// Check if parent contains a marginalized leaf variable. Only need to
// check the first variable because it is the closest to the leaves.
sharedClique parent = clique->parent();
if (leafKeys.exists(parent->conditional()->front()))
clique = parent;
else
break;
}
// See if we should remove the whole clique
bool marginalizeEntireClique = true;
for (Key frontal : clique->conditional()->frontals()) {
if (!leafKeys.exists(frontal)) {
marginalizeEntireClique = false;
break;
}
}
// Remove either the whole clique or part of it
if (marginalizeEntireClique) {
// Remove the whole clique and its subtree, and keep the marginal
// factor.
auto marginalFactor = clique->cachedFactor();
// We do not need the marginal factors associated with this clique
// because their information is already incorporated in the new
// marginal factor. So, now associate this marginal factor with the
// parent of this clique.
marginalFactors[clique->parent()->conditional()->front()].push_back(
marginalFactor);
// Now remove this clique and its subtree - all of its marginal
// information has been stored in marginalFactors.
trackingRemoveSubtree(clique);
} else {
// Reeliminate the current clique and the marginals from its children,
// then keep only the marginal on the non-marginalized variables. We
// get the childrens' marginals from any existing children, plus
// the marginals from the marginalFactors multimap, which come from any
// subtrees already marginalized out.
// Add child marginals and remove marginalized subtrees
GaussianFactorGraph graph;
KeySet factorsInSubtreeRoot;
Cliques subtreesToRemove;
for (const sharedClique& child : clique->children) {
// Remove subtree if child depends on any marginalized keys
for (Key parent : child->conditional()->parents()) {
if (leafKeys.exists(parent)) {
subtreesToRemove.push_back(child);
graph.push_back(child->cachedFactor()); // Add child marginal
break;
}
}
}
Cliques childrenRemoved;
for (const sharedClique& subtree : subtreesToRemove) {
const Cliques removed = trackingRemoveSubtree(subtree);
childrenRemoved.insert(childrenRemoved.end(), removed.begin(),
removed.end());
}
// Add the factors that are pulled into the current clique by the
// marginalized variables. These are the factors that involve
// *marginalized* frontal variables in this clique but do not involve
// frontal variables of any of its children.
// TODO(dellaert): reuse cached linear factors
KeySet factorsFromMarginalizedInClique_step1;
for (Key frontal : clique->conditional()->frontals()) {
if (leafKeys.exists(frontal))
factorsFromMarginalizedInClique_step1.insert(
variableIndex_[frontal].begin(), variableIndex_[frontal].end());
}
// Remove any factors in subtrees that we're removing at this step
for (const sharedClique& removedChild : childrenRemoved) {
for (Key indexInClique : removedChild->conditional()->frontals()) {
for (Key factorInvolving : variableIndex_[indexInClique]) {
factorsFromMarginalizedInClique_step1.erase(factorInvolving);
}
}
}
// Create factor graph from factor indices
for (const auto index : factorsFromMarginalizedInClique_step1) {
graph.push_back(nonlinearFactors_[index]->linearize(theta_));
}
// Reeliminate the linear graph to get the marginal and discard the
// conditional
auto cg = clique->conditional();
const KeySet cliqueFrontals(cg->beginFrontals(), cg->endFrontals());
KeyVector cliqueFrontalsToEliminate;
std::set_intersection(cliqueFrontals.begin(), cliqueFrontals.end(),
leafKeys.begin(), leafKeys.end(),
std::back_inserter(cliqueFrontalsToEliminate));
auto eliminationResult1 = params_.getEliminationFunction()(
graph, Ordering(cliqueFrontalsToEliminate));
// Add the resulting marginal
if (eliminationResult1.second)
marginalFactors[cg->front()].push_back(eliminationResult1.second);
// Split the current clique
// Find the position of the last leaf key in this clique
DenseIndex nToRemove = 0;
while (leafKeys.exists(cg->keys()[nToRemove])) ++nToRemove;
// Make the clique's matrix appear as a subset
const DenseIndex dimToRemove = cg->matrixObject().offset(nToRemove);
cg->matrixObject().firstBlock() = nToRemove;
cg->matrixObject().rowStart() = dimToRemove;
// Change the keys in the clique
KeyVector originalKeys;
originalKeys.swap(cg->keys());
cg->keys().assign(originalKeys.begin() + nToRemove, originalKeys.end());
cg->nrFrontals() -= nToRemove;
// Add to factorIndicesToRemove any factors involved in frontals of
// current clique
for (Key frontal : cliqueFrontalsToEliminate) {
const auto& involved = variableIndex_[frontal];
factorIndicesToRemove.insert(involved.begin(), involved.end());
}
// Add removed keys
leafKeysRemoved.insert(cliqueFrontalsToEliminate.begin(),
cliqueFrontalsToEliminate.end());
}
}
}
// At this point we have updated the BayesTree, now update the remaining iSAM2
// data structures
// Gather factors to add - the new marginal factors
GaussianFactorGraph factorsToAdd;
for (const auto& key_factors : marginalFactors) {
for (const auto& factor : key_factors.second) {
if (factor) {
factorsToAdd.push_back(factor);
if (marginalFactorsIndices)
marginalFactorsIndices->push_back(nonlinearFactors_.size());
nonlinearFactors_.push_back(
std::make_shared<LinearContainerFactor>(factor));
if (params_.cacheLinearizedFactors) linearFactors_.push_back(factor);
for (Key factorKey : *factor) {
fixedVariables_.insert(factorKey);
}
}
}
}
variableIndex_.augment(factorsToAdd); // Augment the variable index
// Remove the factors to remove that have been summarized in the newly-added
// marginal factors
NonlinearFactorGraph removedFactors;
for (const auto index : factorIndicesToRemove) {
removedFactors.push_back(nonlinearFactors_[index]);
nonlinearFactors_.remove(index);
if (params_.cacheLinearizedFactors) linearFactors_.remove(index);
}
variableIndex_.remove(factorIndicesToRemove.begin(),
factorIndicesToRemove.end(), removedFactors);
if (deletedFactorsIndices)
deletedFactorsIndices->assign(factorIndicesToRemove.begin(),
factorIndicesToRemove.end());
// Remove the marginalized variables
removeVariables(KeySet(leafKeys.begin(), leafKeys.end()));
}
/* ************************************************************************* */
// Marked const but actually changes mutable delta
void ISAM2::updateDelta(bool forceFullSolve) const {
gttic(updateDelta);
if (params_.optimizationParams.type() == typeid(ISAM2GaussNewtonParams)) {
// If using Gauss-Newton, update with wildfireThreshold
const ISAM2GaussNewtonParams& gaussNewtonParams =
boost::get<ISAM2GaussNewtonParams>(params_.optimizationParams);
const double effectiveWildfireThreshold =
forceFullSolve ? 0.0 : gaussNewtonParams.wildfireThreshold;
gttic(Wildfire_update);
DeltaImpl::UpdateGaussNewtonDelta(roots_, deltaReplacedMask_,
effectiveWildfireThreshold, &delta_);
deltaReplacedMask_.clear();
gttoc(Wildfire_update);
} else if (params_.optimizationParams.type() == typeid(ISAM2DoglegParams)) {
// If using Dogleg, do a Dogleg step
const ISAM2DoglegParams& doglegParams =
boost::get<ISAM2DoglegParams>(params_.optimizationParams);
const double effectiveWildfireThreshold =
forceFullSolve ? 0.0 : doglegParams.wildfireThreshold;
// Do one Dogleg iteration
gttic(Dogleg_Iterate);
// Compute Newton's method step
gttic(Wildfire_update);
DeltaImpl::UpdateGaussNewtonDelta(
roots_, deltaReplacedMask_, effectiveWildfireThreshold, &deltaNewton_);
gttoc(Wildfire_update);
// Compute steepest descent step
const VectorValues gradAtZero = this->gradientAtZero(); // Compute gradient
DeltaImpl::UpdateRgProd(roots_, deltaReplacedMask_, gradAtZero,
&RgProd_); // Update RgProd
const VectorValues dx_u = DeltaImpl::ComputeGradientSearch(
gradAtZero, RgProd_); // Compute gradient search point
// Clear replaced keys mask because now we've updated deltaNewton_ and
// RgProd_
deltaReplacedMask_.clear();
// Compute dogleg point
DoglegOptimizerImpl::IterationResult doglegResult(
DoglegOptimizerImpl::Iterate(
*doglegDelta_, doglegParams.adaptationMode, dx_u, deltaNewton_,
*this, nonlinearFactors_, theta_, nonlinearFactors_.error(theta_),
doglegParams.verbose));
gttoc(Dogleg_Iterate);
gttic(Copy_dx_d);
// Update Delta and linear step
doglegDelta_ = doglegResult.delta;
delta_ =
doglegResult
.dx_d; // Copy the VectorValues containing with the linear solution
gttoc(Copy_dx_d);
} else {
throw std::runtime_error("iSAM2: unknown ISAM2Params type");
}
}
/* ************************************************************************* */
Values ISAM2::calculateEstimate() const {
gttic(ISAM2_calculateEstimate);
const VectorValues& delta(getDelta());
gttic(Expmap);
return theta_.retract(delta);
gttoc(Expmap);
}
/* ************************************************************************* */
const Value& ISAM2::calculateEstimate(Key key) const {
const Vector& delta = getDelta()[key];
return *theta_.at(key).retract_(delta);
}
/* ************************************************************************* */
Values ISAM2::calculateBestEstimate() const {
updateDelta(true); // Force full solve when updating delta_
return theta_.retract(delta_);
}
/* ************************************************************************* */
Matrix ISAM2::marginalCovariance(Key key) const {
return marginalFactor(key, params_.getEliminationFunction())
->information()
.inverse();
}
/* ************************************************************************* */
const VectorValues& ISAM2::getDelta() const {
if (!deltaReplacedMask_.empty()) updateDelta();
return delta_;
}
/* ************************************************************************* */
double ISAM2::error(const VectorValues& x) const {
return GaussianFactorGraph(*this).error(x);
}
/* ************************************************************************* */
VectorValues ISAM2::gradientAtZero() const {
// Create result
VectorValues g;
// Sum up contributions for each clique
for (const auto& root : this->roots()) root->addGradientAtZero(&g);
return g;
}
} // namespace gtsam