gtsam/tests/testNonlinearFactorGraph.cpp

97 lines
2.8 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file testNonlinearFactorGraph.cpp
* @brief Unit tests for Non-Linear Factor Graph
* @brief testNonlinearFactorGraph
* @author Carlos Nieto
* @author Christian Potthast
*/
/*STL/C++*/
#include <iostream>
using namespace std;
#include <boost/assign/std/list.hpp>
using namespace boost::assign;
#include <gtsam/CppUnitLite/TestHarness.h>
#define GTSAM_MAGIC_KEY
#include <gtsam/base/Matrix.h>
#include <gtsam/slam/smallExample.h>
#include <gtsam/inference/FactorGraph-inl.h>
#include <gtsam/nonlinear/NonlinearFactorGraph-inl.h>
using namespace gtsam;
using namespace example;
/* ************************************************************************* */
TEST( Graph, equals )
{
Graph fg = createNonlinearFactorGraph();
Graph fg2 = createNonlinearFactorGraph();
CHECK( fg.equals(fg2) );
}
/* ************************************************************************* */
TEST( Graph, error )
{
Graph fg = createNonlinearFactorGraph();
Values c1 = createValues();
double actual1 = fg.error(c1);
DOUBLES_EQUAL( 0.0, actual1, 1e-9 );
Values c2 = createNoisyValues();
double actual2 = fg.error(c2);
DOUBLES_EQUAL( 5.625, actual2, 1e-9 );
}
/* ************************************************************************* */
TEST( Graph, GET_ORDERING)
{
Ordering expected; expected += "x1","l1","x2";
Graph nlfg = createNonlinearFactorGraph();
Ordering actual = *nlfg.orderingCOLAMD(createNoisyValues());
CHECK(assert_equal(expected,actual));
}
/* ************************************************************************* */
TEST( Graph, probPrime )
{
Graph fg = createNonlinearFactorGraph();
Values cfg = createValues();
// evaluate the probability of the factor graph
double actual = fg.probPrime(cfg);
double expected = 1.0;
DOUBLES_EQUAL(expected,actual,0);
}
/* ************************************************************************* */
TEST( Graph, linearize )
{
Graph fg = createNonlinearFactorGraph();
Values initial = createNoisyValues();
boost::shared_ptr<GaussianFactorGraph> linearized = fg.linearize(initial, *initial.orderingArbitrary());
GaussianFactorGraph expected = createGaussianFactorGraph(*initial.orderingArbitrary());
CHECK(assert_equal(expected,*linearized)); // Needs correct linearizations
}
/* ************************************************************************* */
int main() {
TestResult tr;
return TestRegistry::runAllTests(tr);
}
/* ************************************************************************* */