gtsam/gtsam/inference/JunctionTreeUnordered-inst.h

194 lines
9.1 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file JunctionTree-inl.h
* @date Feb 4, 2010
* @author Kai Ni
* @author Frank Dellaert
* @author Richard Roberts
* @brief The junction tree, template bodies
*/
#pragma once
#include <gtsam/base/timing.h>
#include <gtsam/base/treeTraversal-inst.h>
#include <gtsam/inference/JunctionTreeUnordered.h>
#include <gtsam/symbolic/SymbolicConditionalUnordered.h>
#include <boost/foreach.hpp>
namespace gtsam {
/* ************************************************************************* */
template<class BAYESTREE, class GRAPH>
typename JunctionTreeUnordered<BAYESTREE,GRAPH>::sharedFactor
JunctionTreeUnordered<BAYESTREE,GRAPH>::Node::eliminate(
const boost::shared_ptr<BayesTreeType>& output,
const Eliminate& function, const std::vector<sharedFactor>& childrenResults) const
{
// This function eliminates one node (Node::eliminate) - see below eliminate for the whole tree.
assert(childrenResults.size() == children.size());
// Gather factors
std::vector<sharedFactor> gatheredFactors;
gatheredFactors.reserve(factors.size() + children.size());
gatheredFactors.insert(gatheredFactors.end(), factors.begin(), factors.end());
gatheredFactors.insert(gatheredFactors.end(), childrenResults.begin(), childrenResults.end());
// Do dense elimination step
std::pair<boost::shared_ptr<ConditionalType>, boost::shared_ptr<FactorType> > eliminationResult =
function(gatheredFactors, keys);
// Add conditional to BayesNet
output->push_back(eliminationResult.first);
// Return result
return eliminationResult.second;
}
namespace {
/* ************************************************************************* */
template<class BAYESTREE, class GRAPH>
struct ConstructorTraversalData {
const ConstructorTraversalData* parentData;
typename JunctionTreeUnordered<BAYESTREE,GRAPH>::sharedNode myJTNode;
std::vector<SymbolicConditionalUnordered::shared_ptr> childSymbolicConditionals;
std::vector<SymbolicFactorUnordered::shared_ptr> childSymbolicFactors;
ConstructorTraversalData(const ConstructorTraversalData* _parentData) : parentData(_parentData) {}
};
/* ************************************************************************* */
// Pre-order visitor function
template<class BAYESTREE, class GRAPH, class ETREE_NODE>
ConstructorTraversalData<BAYESTREE,GRAPH> ConstructorTraversalVisitorPre(
const boost::shared_ptr<ETREE_NODE>& node,
const ConstructorTraversalData<BAYESTREE,GRAPH>& parentData)
{
// On the pre-order pass, before children have been visited, we just set up a traversal data
// structure with its own JT node, and create a child pointer in its parent.
ConstructorTraversalData<BAYESTREE,GRAPH> myData = ConstructorTraversalData<BAYESTREE,GRAPH>(&parentData);
myData.myJTNode = boost::make_shared<typename JunctionTreeUnordered<BAYESREE,GRAPH>::Node>();
myData.myJTNode->keys.push_back(node->key);
myData.myJTNode->factors.insert(myData.myJTNode->factors.begin(), node->factors.begin(), node->factors.end());
parentData.myJTNode->children.push_back(myData.myJTNode);
return myData;
}
/* ************************************************************************* */
// Post-order visitor function
template<class BAYESTREE, class GRAPH, class ETREE_NODE>
void ConstructorTraversalVisitorPost(
const boost::shared_ptr<ETREE_NODE>& node,
const ConstructorTraversalData<BAYESTREE,GRAPH>& myData)
{
// Do symbolic elimination for this node
std::vector<SymbolicFactorUnordered::shared_ptr> symbolicFactors;
symbolicFactors.reserve(node->factors.size() + myData.childSymbolicFactors.size());
BOOST_FOREACH(const typename GRAPH::sharedFactor& factor, node->factors) {
symbolicFactors.push_back(boost::make_shared<SymbolicFactorUnordered>(factor)); }
symbolicFactors.insert(symbolicFactors.end(), myData.childSymbolicFactors.begin(), myData.childSymbolicFactors.end());
std::vector<Key> keyAsVector(1); keyAsVector[0] = node->key;
std::pair<SymbolicConditionalUnordered::shared_ptr, SymbolicFactorUnordered::shared_ptr> symbolicElimResult =
EliminateSymbolicUnordered(symbolicFactors, keyAsVector);
// Store symbolic elimination results
myData.parentData->childSymbolicConditionals.push_back(symbolicElimResult.first);
myData.parentData->childSymbolicFactors.push_back(symbolicElimResult.second);
// Merge our children if they are in our clique - if our conditional has exactly one fewer
// parent than our child's conditional.
const size_t myNrParents = symbolicElimResult.first->nrParents();
size_t nrMergedChildren = 0;
assert(myData.myJTNode->children.size() == myData.childSymbolicConditionals.size());
// Loop over children
for(size_t child = 0; child < myData.childSymbolicConditionals.size(); ++child) {
// Check if we should merge the child
if(myNrParents + 1 == myData.childSymbolicConditionals[child]->nrParents()) {
// Get a reference to the child, adjusting the index to account for children previously
// merged and removed from the child list.
const typename JunctionTreeUnordered<BAYESREE,GRAPH>::Node& childToMerge =
*myData.myJTNode->children[child - nrMergedChildren];
// Merge keys, factors, and children.
myData.myJTNode->keys.insert(myData.myJTNode->keys.end(), childToMerge.keys.begin(), childToMerge.keys.end());
myData.myJTNode->factors.insert(myData.myJTNode->factors.end(), childToMerge.factors.begin(), childToMerge.factors.end());
myData.myJTNode->children.insert(myData.myJTNode->children.end(), childToMerge.children.begin(), childToMerge.children.end());
// Remove child from list.
myData.myJTNode->children.erase(myData.myJTNode->children.begin() + child - nrMergedChildren);
}
}
}
}
/* ************************************************************************* */
template<class BAYESTREE, class GRAPH>
template<class ETREE>
JunctionTreeUnordered<BAYESTREE,GRAPH>::JunctionTreeUnordered(const ETREE& eliminationTree)
{
// Here we rely on the BayesNet having been produced by this elimination tree, such that the
// conditionals are arranged in DFS post-order. We traverse the elimination tree, and inspect
// the symbolic conditional corresponding to each node. The elimination tree node is added to
// the same clique with its parent if it has exactly one more Bayes net conditional parent than
// does its elimination tree parent.
// Traverse the elimination tree, doing symbolic elimination and merging nodes as we go. Gather
// the created junction tree roots in a dummy Node.
ConstructorTraversalData<BAYESTREE, GRAPH> rootData(0);
rootData.myJTNode = boost::make_shared<Node>(); // Make a dummy node to gather the junction tree roots
treeTraversal.DepthFirstForest(eliminationTree, rootData,
ConstructorTraversalVisitorPre<BAYESREE,GRAPH>, ConstructorTraversalVisitorPost<BAYESTREE,GRAPH>);
// Assign roots from the dummy node
roots_ = rootData.myJTNode->children;
// Transfer remaining factors from elimination tree
remainingFactors_ = eliminationTree.remainingFactors();
}
/* ************************************************************************* */
template<class BAYESTREE, class GRAPH>
JunctionTreeUnordered<BAYESTREE,GRAPH>& JunctionTreeUnordered<BAYESREE,GRAPH>::operator=(const This& other)
{
// Start by duplicating the tree.
roots_ = treeTraversal::CloneForest(other);
// Assign the remaining factors - these are pointers to factors in the original factor graph and
// we do not clone them.
remainingFactors_ = other.remainingFactors_;
return *this;
}
/* ************************************************************************* */
template<class BAYESTREE, class GRAPH>
std::pair<boost::shared_ptr<BAYESTREE>, boost::shared_ptr<GRAPH> >
JunctionTreeUnordered<BAYESTREE,GRAPH>::eliminate(const Eliminate& function) const
{
// Allocate result
boost::shared_ptr<BayesTreeType> result = boost::make_shared<BayesTreeType>();
// Run tree elimination algorithm
std::vector<sharedFactor> remainingFactors = inference::EliminateTree(result, *this, function);
// Add remaining factors that were not involved with eliminated variables
boost::shared_ptr<FactorGraphType> allRemainingFactors = boost::make_shared<FactorGraphType>();
allRemainingFactors->push_back(remainingFactors_.begin(), remainingFactors_.end());
allRemainingFactors->push_back(remainingFactors.begin(), remainingFactors.end());
// Return result
return std::make_pair(result, allRemainingFactors);
}
} //namespace gtsam