81 lines
		
	
	
		
			2.3 KiB
		
	
	
	
		
			Matlab
		
	
	
			
		
		
	
	
			81 lines
		
	
	
		
			2.3 KiB
		
	
	
	
		
			Matlab
		
	
	
% /* ----------------------------------------------------------------------------
 | 
						|
%
 | 
						|
%  * GTSAM Copyright 2010, Georgia Tech Research Corporation,
 | 
						|
%  * Atlanta, Georgia 30332-0415
 | 
						|
%  * All Rights Reserved
 | 
						|
%  * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
 | 
						|
%
 | 
						|
%  * See LICENSE for the license information
 | 
						|
%
 | 
						|
%  * -------------------------------------------------------------------------- */
 | 
						|
%
 | 
						|
% /**
 | 
						|
%  * @file testKalmanFilter.cpp
 | 
						|
%  * @brief Test simple linear Kalman filter on a moving 2D point
 | 
						|
%  * @date Sep 3, 2011
 | 
						|
%  * @author Stephen Williams
 | 
						|
%  * @author Frank Dellaert
 | 
						|
%  * @author Richard Roberts
 | 
						|
%  */
 | 
						|
 | 
						|
%% Create the controls and measurement properties for our example
 | 
						|
F = eye(2,2);
 | 
						|
B = eye(2,2);
 | 
						|
u = [1.0; 0.0];
 | 
						|
modelQ = gtsamSharedDiagonal([0.1;0.1]);
 | 
						|
Q = 0.01*eye(2,2);
 | 
						|
H = eye(2,2);
 | 
						|
z1 = [1.0, 0.0]';
 | 
						|
z2 = [2.0, 0.0]';
 | 
						|
z3 = [3.0, 0.0]';
 | 
						|
modelR = gtsamSharedDiagonal([0.1;0.1]);
 | 
						|
R = 0.01*eye(2,2);
 | 
						|
 | 
						|
%% Create the set of expected output TestValues
 | 
						|
expected0 = [0.0, 0.0]';
 | 
						|
P00 = 0.01*eye(2,2);
 | 
						|
 | 
						|
expected1 = [1.0, 0.0]';
 | 
						|
P01 = P00 + Q;
 | 
						|
I11 = inv(P01) + inv(R);
 | 
						|
 | 
						|
expected2 = [2.0, 0.0]';
 | 
						|
P12 = inv(I11) + Q;
 | 
						|
I22 = inv(P12) + inv(R);
 | 
						|
 | 
						|
expected3 = [3.0, 0.0]';
 | 
						|
P23 = inv(I22) + Q;
 | 
						|
I33 = inv(P23) + inv(R);
 | 
						|
 | 
						|
%% Create an KalmanFilter object
 | 
						|
KF = gtsamKalmanFilter(2);
 | 
						|
 | 
						|
%% Create the Kalman Filter initialization point
 | 
						|
x_initial = [0.0;0.0];
 | 
						|
P_initial = 0.01*eye(2);
 | 
						|
 | 
						|
%% Create an KF object
 | 
						|
state = KF.init(x_initial, P_initial);
 | 
						|
EQUALITY('expected0,state.mean', expected0,state.mean);
 | 
						|
EQUALITY('expected0,state.mean', P00,state.covariance);
 | 
						|
 | 
						|
%% Run iteration 1
 | 
						|
state = KF.predict(state,F, B, u, modelQ);
 | 
						|
EQUALITY('expected1,state.mean', expected1,state.mean);
 | 
						|
EQUALITY('P01,state.covariance', P01,state.covariance);
 | 
						|
state = KF.update(state,H,z1,modelR);
 | 
						|
EQUALITY('expected1,state.mean', expected1,state.mean);
 | 
						|
EQUALITY('I11,state.information', I11,state.information);
 | 
						|
 | 
						|
%% Run iteration 2
 | 
						|
state = KF.predict(state,F, B, u, modelQ);
 | 
						|
EQUALITY('expected2,state.mean', expected2,state.mean);
 | 
						|
state = KF.update(state,H,z2,modelR);
 | 
						|
EQUALITY('expected2,state.mean', expected2,state.mean);
 | 
						|
 | 
						|
%% Run iteration 3
 | 
						|
state = KF.predict(state,F, B, u, modelQ);
 | 
						|
EQUALITY('expected3,state.mean', expected3,state.mean);
 | 
						|
state = KF.update(state,H,z3,modelR);
 | 
						|
EQUALITY('expected3,state.mean', expected3,state.mean);
 |