gtsam/examples/VisualISAM2Example.cpp

160 lines
6.9 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file VisualISAM2Example.cpp
* @brief A visualSLAM example for the structure-from-motion problem on a simulated dataset
* This version uses iSAM2 to solve the problem incrementally
* @author Duy-Nguyen Ta
*/
/**
* A structure-from-motion example with landmarks
* - The landmarks form a 10 meter cube
* - The robot rotates around the landmarks, always facing towards the cube
*/
// As this is a full 3D problem, we will use Pose3 variables to represent the camera
// positions and Point3 variables (x, y, z) to represent the landmark coordinates.
// Camera observations of landmarks (i.e. pixel coordinates) will be stored as Point2 (x, y).
// We will also need a camera object to hold calibration information and perform projections.
#include <gtsam/geometry/Pose3.h>
#include <gtsam/geometry/Point3.h>
#include <gtsam/geometry/Point2.h>
#include <gtsam/geometry/SimpleCamera.h>
// Each variable in the system (poses and landmarks) must be identified with a unique key.
// We can either use simple integer keys (1, 2, 3, ...) or symbols (X1, X2, L1).
// Here we will use Symbols
#include <gtsam/nonlinear/Symbol.h>
// We want to use iSAM2 to solve the structure-from-motion problem incrementally, so
// include iSAM2 here
#include <gtsam/nonlinear/ISAM2.h>
// iSAM2 requires as input a set set of new factors to be added stored in a factor graph,
// and initial guesses for any new variables used in the added factors
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
#include <gtsam/nonlinear/Values.h>
// In GTSAM, measurement functions are represented as 'factors'. Several common factors
// have been provided with the library for solving robotics/SLAM/Bundle Adjustment problems.
// Here we will use Projection factors to model the camera's landmark observations.
// Also, we will initialize the robot at some location using a Prior factor.
#include <gtsam/slam/PriorFactor.h>
#include <gtsam/slam/ProjectionFactor.h>
#include <vector>
using namespace std;
using namespace gtsam;
/* ************************************************************************* */
int main(int argc, char* argv[]) {
// Define the camera calibration parameters
Cal3_S2::shared_ptr K(new Cal3_S2(50.0, 50.0, 0.0, 50.0, 50.0));
// Define the camera observation noise model
noiseModel::Isotropic::shared_ptr measurementNoise = noiseModel::Isotropic::Sigma(2, 1.0); // one pixel in u and v
// Create the set of ground-truth landmarks
std::vector<gtsam::Point3> points;
points.push_back(gtsam::Point3(10.0,10.0,10.0));
points.push_back(gtsam::Point3(-10.0,10.0,10.0));
points.push_back(gtsam::Point3(-10.0,-10.0,10.0));
points.push_back(gtsam::Point3(10.0,-10.0,10.0));
points.push_back(gtsam::Point3(10.0,10.0,-10.0));
points.push_back(gtsam::Point3(-10.0,10.0,-10.0));
points.push_back(gtsam::Point3(-10.0,-10.0,-10.0));
points.push_back(gtsam::Point3(10.0,-10.0,-10.0));
// Create the set of ground-truth poses
std::vector<gtsam::Pose3> poses;
double radius = 30.0;
int i = 0;
double theta = 0.0;
gtsam::Point3 up(0,0,1);
gtsam::Point3 target(0,0,0);
for(; i < 8; ++i, theta += 2*M_PI/8) {
gtsam::Point3 position = Point3(radius*cos(theta), radius*sin(theta), 0.0);
gtsam::SimpleCamera camera = SimpleCamera::Lookat(position, target, up);
poses.push_back(camera.pose());
}
// Create an iSAM2 object. Unlike iSAM1, which performs periodic batch steps to maintain proper linearization
// and efficient variable ordering, iSAM2 performs partial relinearization/reordering at each step. A parameter
// structure is available that allows the user to set various properties, such as the relinearization threshold
// and type of linear solver. For this example, we we set the relinearization threshold small so the iSAM2 result
// will approach the batch result.
ISAM2Params parameters;
parameters.relinearizeThreshold = 0.01;
parameters.relinearizeSkip = 1;
ISAM2 isam(parameters);
// Create a Factor Graph and Values to hold the new data
NonlinearFactorGraph graph;
Values initialEstimate;
// Loop over the different poses, adding the observations to iSAM incrementally
for (size_t i = 0; i < poses.size(); ++i) {
// Add factors for each landmark observation
for (size_t j = 0; j < points.size(); ++j) {
SimpleCamera camera(poses[i], *K);
Point2 measurement = camera.project(points[j]);
graph.add(GenericProjectionFactor<Pose3, Point3, Cal3_S2>(measurement, measurementNoise, Symbol('x', i), Symbol('l', j), K));
}
// Add an initial guess for the current pose
// Intentionally initialize the variables off from the ground truth
initialEstimate.insert(Symbol('x', i), poses[i].compose(Pose3(Rot3::rodriguez(-0.1, 0.2, 0.25), Point3(0.05, -0.10, 0.20))));
// If this is the first iteration, add a prior on the first pose to set the coordinate frame
// and a prior on the first landmark to set the scale
// Also, as iSAM solves incrementally, we must wait until each is observed at least twice before
// adding it to iSAM.
if( i == 0) {
// Add a prior on pose x0
noiseModel::Diagonal::shared_ptr poseNoise = noiseModel::Diagonal::Sigmas(Vector_(6, 0.3, 0.3, 0.3, 0.1, 0.1, 0.1)); // 30cm std on x,y,z 0.1 rad on roll,pitch,yaw
graph.add(PriorFactor<Pose3>(Symbol('x', 0), poses[0], poseNoise));
// Add a prior on landmark l0
noiseModel::Isotropic::shared_ptr pointNoise = noiseModel::Isotropic::Sigma(3, 0.1);
graph.add(PriorFactor<Point3>(Symbol('l', 0), points[0], pointNoise)); // add directly to graph
// Add initial guesses to all observed landmarks
// Intentionally initialize the variables off from the ground truth
for (size_t j = 0; j < points.size(); ++j)
initialEstimate.insert(Symbol('l', j), points[j].compose(Point3(-0.25, 0.20, 0.15)));
} else {
// Update iSAM with the new factors
isam.update(graph, initialEstimate);
// Each call to iSAM2 update(*) performs one iteration of the iterative nonlinear solver.
// If accuracy is desired at the expense of time, update(*) can be called additional times
// to perform multiple optimizer iterations every step.
isam.update();
Values currentEstimate = isam.calculateEstimate();
cout << "****************************************************" << endl;
cout << "Frame " << i << ": " << endl;
currentEstimate.print("Current estimate: ");
// Clear the factor graph and values for the next iteration
graph.resize(0);
initialEstimate.clear();
}
}
return 0;
}
/* ************************************************************************* */