89 lines
		
	
	
		
			2.9 KiB
		
	
	
	
		
			C++
		
	
	
			
		
		
	
	
			89 lines
		
	
	
		
			2.9 KiB
		
	
	
	
		
			C++
		
	
	
| /* ----------------------------------------------------------------------------
 | |
| 
 | |
|  * GTSAM Copyright 2010, Georgia Tech Research Corporation, 
 | |
|  * Atlanta, Georgia 30332-0415
 | |
|  * All Rights Reserved
 | |
|  * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
 | |
| 
 | |
|  * See LICENSE for the license information
 | |
| 
 | |
|  * -------------------------------------------------------------------------- */
 | |
| 
 | |
| /**
 | |
|  * @file Pose2SLAMExample.cpp
 | |
|  * @brief Simple Pose2SLAM Example using
 | |
|  * pre-built pose2SLAM domain
 | |
|  * @author Chris Beall
 | |
|  */
 | |
| 
 | |
| #include <cmath>
 | |
| #include <iostream>
 | |
| #include <boost/shared_ptr.hpp>
 | |
| 
 | |
| // pull in the Pose2 SLAM domain with all typedefs and helper functions defined
 | |
| #include <gtsam/slam/pose2SLAM.h>
 | |
| #include <gtsam/nonlinear/NonlinearOptimization-inl.h>
 | |
| 
 | |
| #include <gtsam/base/Vector.h>
 | |
| #include <gtsam/base/Matrix.h>
 | |
| 
 | |
| using namespace std;
 | |
| using namespace gtsam;
 | |
| using namespace boost;
 | |
| using namespace gtsam::pose2SLAM;
 | |
| 
 | |
| int main(int argc, char** argv) {
 | |
| 	// create keys for robot positions
 | |
| 	Key x1(1), x2(2), x3(3);
 | |
| 
 | |
| 	/* 1. create graph container and add factors to it */
 | |
| 	shared_ptr<Graph> graph(new Graph);
 | |
| 
 | |
| 	/* 2.a add prior  */
 | |
| 	// gaussian for prior
 | |
| 	SharedDiagonal prior_model = noiseModel::Diagonal::Sigmas(Vector_(3, 0.3, 0.3, 0.1));
 | |
| 	Pose2 prior_measurement(0.0, 0.0, 0.0); // prior at origin
 | |
| 	graph->addPrior(x1, prior_measurement, prior_model); // add directly to graph
 | |
| 
 | |
| 	/* 2.b add odometry */
 | |
| 	// general noisemodel for odometry
 | |
| 	SharedDiagonal odom_model = noiseModel::Diagonal::Sigmas(Vector_(3, 0.2, 0.2, 0.1));
 | |
| 
 | |
| 	/* Pose2 measurements take (x,y,theta), where theta is taken from the positive x-axis*/
 | |
| 	Pose2 odom_measurement(2.0, 0.0, 0.0); // create a measurement for both factors (the same in this case)
 | |
| 	graph->addConstraint(x1, x2, odom_measurement, odom_model);
 | |
| 	graph->addConstraint(x2, x3, odom_measurement, odom_model);
 | |
| 	graph->print("full graph");
 | |
| 
 | |
|   /* 3. Create the data structure to hold the initial estimate to the solution
 | |
|    * initialize to noisy points */
 | |
| 	shared_ptr<Values> initial(new Values);
 | |
| 	initial->insert(x1, Pose2(0.5, 0.0, 0.2));
 | |
| 	initial->insert(x2, Pose2(2.3, 0.1,-0.2));
 | |
| 	initial->insert(x3, Pose2(4.1, 0.1, 0.1));
 | |
| 	initial->print("initial estimate");
 | |
| 
 | |
| 
 | |
| 	/* 4.2.1 Alternatively, you can go through the process step by step
 | |
| 	 * Choose an ordering */
 | |
| 	Ordering::shared_ptr ordering = graph->orderingCOLAMD(*initial);
 | |
| 
 | |
| 	/* 4.2.2 set up solver and optimize */
 | |
| 	Optimizer optimizer(graph, initial, ordering);
 | |
| 	Optimizer::Parameters::verbosityLevel verbosity = pose2SLAM::Optimizer::Parameters::SILENT;
 | |
| 	Optimizer optimizer_result = optimizer.levenbergMarquardt(1e-15, 1e-15, verbosity);
 | |
| 
 | |
| 	Values result = *optimizer_result.values();
 | |
| 	result.print("final result");
 | |
| 
 | |
| 	/* Get covariances */
 | |
| 	Matrix covariance1  = optimizer_result.marginalCovariance(x1).second;
 | |
| 	Matrix covariance2  = optimizer_result.marginalCovariance(x2).second;
 | |
| 
 | |
| 	print(covariance1, "Covariance1");
 | |
| 	print(covariance2, "Covariance2");
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 |