gtsam/examples/Pose2SLAMExampleRobust_g2o.cpp

116 lines
3.3 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file Pose2SLAMExample.cpp
* @brief A 2D Pose SLAM example that reads input from g2o and uses robust kernels in optimization
* @date May 15, 2014
* @author Luca Carlone
*/
#include <gtsam/geometry/Pose2.h>
#include <gtsam/inference/Key.h>
#include <gtsam/slam/PriorFactor.h>
#include <gtsam/slam/dataset.h>
#include <gtsam/slam/BetweenFactor.h>
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
#include <gtsam/nonlinear/GaussNewtonOptimizer.h>
#include <gtsam/nonlinear/Marginals.h>
#include <gtsam/nonlinear/Values.h>
#include <fstream>
#include <sstream>
using namespace std;
using namespace gtsam;
#define LINESIZE 81920
int main(const int argc, const char *argv[]){
if (argc < 2)
std::cout << "Please specify input file (in g2o format) and output file" << std::endl;
const string g2oFile = argv[1];
ifstream is(g2oFile.c_str());
if (!is)
throw std::invalid_argument("File not found!");
std::cout << "Reading g2o file: " << g2oFile << std::endl;
// READ INITIAL GUESS FROM G2O FILE
Values initial;
string tag;
while (is) {
if(! (is >> tag))
break;
if (tag == "VERTEX_SE2") {
int id;
double x, y, yaw;
is >> id >> x >> y >> yaw;
initial.insert(id, Pose2(x, y, yaw));
}
is.ignore(LINESIZE, '\n');
}
is.clear(); /* clears the end-of-file and error flags */
is.seekg(0, ios::beg);
// initial.print("initial guess");
// READ MEASUREMENTS FROM G2O FILE
NonlinearFactorGraph graph;
while (is) {
if(! (is >> tag))
break;
if (tag == "EDGE_SE2") {
int id1, id2;
double x, y, yaw;
double I11, I12, I13, I22, I23, I33;
is >> id1 >> id2 >> x >> y >> yaw;
is >> I11 >> I12 >> I13 >> I22 >> I23 >> I33;
// Try to guess covariance matrix layout
Matrix m(3,3);
m << I11, I12, I13, I12, I22, I23, I13, I23, I33;
Pose2 l1Xl2(x, y, yaw);
noiseModel::Diagonal::shared_ptr model = noiseModel::Diagonal::Variances((Vector(3) << 1/I11, 1/I22, 1/I33));
NonlinearFactor::shared_ptr factor(new BetweenFactor<Pose2>(id1, id2, l1Xl2, model));
graph.add(factor);
}
is.ignore(LINESIZE, '\n');
}
// graph.print("graph");
// GaussNewtonParams parameters;
// Stop iterating once the change in error between steps is less than this value
// parameters.relativeErrorTol = 1e-5;
// Do not perform more than N iteration steps
// parameters.maxIterations = 100;
// Create the optimizer ...
std::cout << "Optimizing the factor graph" << std::endl;
GaussNewtonOptimizer optimizer(graph, initial); // , parameters);
// ... and optimize
Values result = optimizer.optimize();
// result.print("results");
std::cout << "Optimization complete" << std::endl;
const string outputFile = argv[2];
std::cout << "Writing results to file: " << outputFile << std::endl;
noiseModel::Diagonal::shared_ptr model = noiseModel::Diagonal::Sigmas((Vector(3) << 0.0, 0.0, 0.0));
save2D(graph, result, model, outputFile);
return 0;
}