6810 lines
		
	
	
		
			109 KiB
		
	
	
	
		
			Plaintext
		
	
	
			
		
		
	
	
			6810 lines
		
	
	
		
			109 KiB
		
	
	
	
		
			Plaintext
		
	
	
#LyX 2.0 created this file. For more info see http://www.lyx.org/
 | 
						|
\lyxformat 413
 | 
						|
\begin_document
 | 
						|
\begin_header
 | 
						|
\textclass article
 | 
						|
\use_default_options false
 | 
						|
\begin_modules
 | 
						|
eqs-within-sections
 | 
						|
figs-within-sections
 | 
						|
theorems-ams-bytype
 | 
						|
\end_modules
 | 
						|
\maintain_unincluded_children false
 | 
						|
\language english
 | 
						|
\language_package default
 | 
						|
\inputencoding auto
 | 
						|
\fontencoding global
 | 
						|
\font_roman times
 | 
						|
\font_sans default
 | 
						|
\font_typewriter default
 | 
						|
\font_default_family rmdefault
 | 
						|
\use_non_tex_fonts false
 | 
						|
\font_sc false
 | 
						|
\font_osf false
 | 
						|
\font_sf_scale 100
 | 
						|
\font_tt_scale 100
 | 
						|
 | 
						|
\graphics default
 | 
						|
\default_output_format default
 | 
						|
\output_sync 0
 | 
						|
\bibtex_command default
 | 
						|
\index_command default
 | 
						|
\paperfontsize 12
 | 
						|
\spacing single
 | 
						|
\use_hyperref false
 | 
						|
\papersize default
 | 
						|
\use_geometry true
 | 
						|
\use_amsmath 1
 | 
						|
\use_esint 0
 | 
						|
\use_mhchem 1
 | 
						|
\use_mathdots 1
 | 
						|
\cite_engine basic
 | 
						|
\use_bibtopic false
 | 
						|
\use_indices false
 | 
						|
\paperorientation portrait
 | 
						|
\suppress_date false
 | 
						|
\use_refstyle 0
 | 
						|
\index Index
 | 
						|
\shortcut idx
 | 
						|
\color #008000
 | 
						|
\end_index
 | 
						|
\leftmargin 1in
 | 
						|
\topmargin 1in
 | 
						|
\rightmargin 1in
 | 
						|
\bottommargin 1in
 | 
						|
\secnumdepth 3
 | 
						|
\tocdepth 3
 | 
						|
\paragraph_separation indent
 | 
						|
\paragraph_indentation default
 | 
						|
\quotes_language english
 | 
						|
\papercolumns 1
 | 
						|
\papersides 1
 | 
						|
\paperpagestyle default
 | 
						|
\tracking_changes false
 | 
						|
\output_changes false
 | 
						|
\html_math_output 0
 | 
						|
\html_css_as_file 0
 | 
						|
\html_be_strict false
 | 
						|
\end_header
 | 
						|
 | 
						|
\begin_body
 | 
						|
 | 
						|
\begin_layout Title
 | 
						|
Derivatives and Differentials
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Author
 | 
						|
Frank Dellaert
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Standard
 | 
						|
\begin_inset Box Frameless
 | 
						|
position "t"
 | 
						|
hor_pos "c"
 | 
						|
has_inner_box 1
 | 
						|
inner_pos "t"
 | 
						|
use_parbox 0
 | 
						|
use_makebox 0
 | 
						|
width "100col%"
 | 
						|
special "none"
 | 
						|
height "1in"
 | 
						|
height_special "totalheight"
 | 
						|
status collapsed
 | 
						|
 | 
						|
\begin_layout Plain Layout
 | 
						|
\begin_inset FormulaMacro
 | 
						|
\newcommand{\SqrMah}[3]{\Vert{#1}-{#2}\Vert_{#3}^{2}}
 | 
						|
{\Vert{#1}-{#2}\Vert_{#3}^{2}}
 | 
						|
\end_inset
 | 
						|
 | 
						|
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Plain Layout
 | 
						|
\begin_inset FormulaMacro
 | 
						|
\newcommand{\SqrZMah}[2]{\Vert{#1}\Vert_{#2}^{2}}
 | 
						|
{\Vert{#1}\Vert_{#2}^{2}}
 | 
						|
\end_inset
 | 
						|
 | 
						|
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Plain Layout
 | 
						|
\begin_inset FormulaMacro
 | 
						|
\newcommand{\Rone}{\mathbb{R}}
 | 
						|
{\mathbb{R}}
 | 
						|
\end_inset
 | 
						|
 | 
						|
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Plain Layout
 | 
						|
\begin_inset FormulaMacro
 | 
						|
\newcommand{\Reals}[1]{\mathbb{R}^{#1}}
 | 
						|
{\mathbb{R}^{#1}}
 | 
						|
\end_inset
 | 
						|
 | 
						|
 | 
						|
\begin_inset FormulaMacro
 | 
						|
\newcommand{\OneD}[1]{\Reals{#1}\rightarrow\Rone}
 | 
						|
{\Reals{#1}\rightarrow\Rone}
 | 
						|
\end_inset
 | 
						|
 | 
						|
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Plain Layout
 | 
						|
\begin_inset FormulaMacro
 | 
						|
\newcommand{\Multi}[2]{\Reals{#1}\rightarrow\Reals{#2}}
 | 
						|
{\Reals{#1}\rightarrow\Reals{#2}}
 | 
						|
\end_inset
 | 
						|
 | 
						|
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Plain Layout
 | 
						|
\begin_inset FormulaMacro
 | 
						|
\newcommand{\Man}{\mathcal{M}}
 | 
						|
{\mathcal{M}}
 | 
						|
\end_inset
 | 
						|
 | 
						|
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Plain Layout
 | 
						|
\begin_inset Note Comment
 | 
						|
status open
 | 
						|
 | 
						|
\begin_layout Plain Layout
 | 
						|
Derivatives
 | 
						|
\end_layout
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Plain Layout
 | 
						|
\begin_inset FormulaMacro
 | 
						|
\newcommand{\deriv}[2]{\frac{\partial#1}{\partial#2}}
 | 
						|
{\frac{\partial#1}{\partial#2}}
 | 
						|
\end_inset
 | 
						|
 | 
						|
 | 
						|
\begin_inset FormulaMacro
 | 
						|
\newcommand{\at}[2]{#1\biggr\rvert_{#2}}
 | 
						|
{#1\biggr\rvert_{#2}}
 | 
						|
\end_inset
 | 
						|
 | 
						|
 
 | 
						|
\begin_inset FormulaMacro
 | 
						|
\newcommand{\Jac}[3]{ \at{\deriv{#1}{#2}} {#3} }
 | 
						|
{\at{\deriv{#1}{#2}}{#3}}
 | 
						|
\end_inset
 | 
						|
 | 
						|
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Plain Layout
 | 
						|
\begin_inset Note Comment
 | 
						|
status open
 | 
						|
 | 
						|
\begin_layout Plain Layout
 | 
						|
Lie Groups
 | 
						|
\end_layout
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Plain Layout
 | 
						|
\begin_inset FormulaMacro
 | 
						|
\newcommand{\xhat}{\hat{x}}
 | 
						|
{\hat{x}}
 | 
						|
\end_inset
 | 
						|
 | 
						|
 | 
						|
\begin_inset FormulaMacro
 | 
						|
\newcommand{\yhat}{\hat{y}}
 | 
						|
{\hat{y}}
 | 
						|
\end_inset
 | 
						|
 | 
						|
 | 
						|
\begin_inset FormulaMacro
 | 
						|
\newcommand{\Ad}[1]{Ad_{#1}}
 | 
						|
{Ad_{#1}}
 | 
						|
\end_inset
 | 
						|
 | 
						|
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Plain Layout
 | 
						|
\begin_inset FormulaMacro
 | 
						|
\newcommand{\define}{\stackrel{\Delta}{=}}
 | 
						|
{\stackrel{\Delta}{=}}
 | 
						|
\end_inset
 | 
						|
 | 
						|
 | 
						|
\begin_inset FormulaMacro
 | 
						|
\newcommand{\gg}{\mathfrak{g}}
 | 
						|
{\mathfrak{g}}
 | 
						|
\end_inset
 | 
						|
 | 
						|
 | 
						|
\begin_inset FormulaMacro
 | 
						|
\newcommand{\Rn}{\mathbb{R}^{n}}
 | 
						|
{\mathbb{R}^{n}}
 | 
						|
\end_inset
 | 
						|
 | 
						|
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Plain Layout
 | 
						|
\begin_inset Note Comment
 | 
						|
status open
 | 
						|
 | 
						|
\begin_layout Plain Layout
 | 
						|
SO(2)
 | 
						|
\end_layout
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Plain Layout
 | 
						|
\begin_inset FormulaMacro
 | 
						|
\newcommand{\Rtwo}{\mathbb{R}^{2}}
 | 
						|
{\mathbb{R}^{2}}
 | 
						|
\end_inset
 | 
						|
 | 
						|
 | 
						|
\begin_inset FormulaMacro
 | 
						|
\newcommand{\SOtwo}{SO(2)}
 | 
						|
{SO(2)}
 | 
						|
\end_inset
 | 
						|
 | 
						|
 | 
						|
\begin_inset FormulaMacro
 | 
						|
\newcommand{\sotwo}{\mathfrak{so(2)}}
 | 
						|
{\mathfrak{so(2)}}
 | 
						|
\end_inset
 | 
						|
 | 
						|
 | 
						|
\begin_inset FormulaMacro
 | 
						|
\newcommand{\that}{\hat{\theta}}
 | 
						|
{\hat{\theta}}
 | 
						|
\end_inset
 | 
						|
 | 
						|
 | 
						|
\begin_inset FormulaMacro
 | 
						|
\newcommand{\skew}[1]{[#1]_{+}}
 | 
						|
{[#1]_{+}}
 | 
						|
\end_inset
 | 
						|
 | 
						|
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Plain Layout
 | 
						|
\begin_inset Note Comment
 | 
						|
status open
 | 
						|
 | 
						|
\begin_layout Plain Layout
 | 
						|
SE(2)
 | 
						|
\end_layout
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Plain Layout
 | 
						|
\begin_inset FormulaMacro
 | 
						|
\newcommand{\SEtwo}{SE(2)}
 | 
						|
{SE(2)}
 | 
						|
\end_inset
 | 
						|
 | 
						|
 | 
						|
\begin_inset FormulaMacro
 | 
						|
\newcommand{\setwo}{\mathfrak{se(2)}}
 | 
						|
{\mathfrak{se(2)}}
 | 
						|
\end_inset
 | 
						|
 | 
						|
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Plain Layout
 | 
						|
\begin_inset Note Comment
 | 
						|
status open
 | 
						|
 | 
						|
\begin_layout Plain Layout
 | 
						|
SO(3)
 | 
						|
\end_layout
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Plain Layout
 | 
						|
\begin_inset FormulaMacro
 | 
						|
\newcommand{\Rthree}{\mathbb{R}^{3}}
 | 
						|
{\mathbb{R}^{3}}
 | 
						|
\end_inset
 | 
						|
 | 
						|
 | 
						|
\begin_inset FormulaMacro
 | 
						|
\newcommand{\SOthree}{SO(3)}
 | 
						|
{SO(3)}
 | 
						|
\end_inset
 | 
						|
 | 
						|
 | 
						|
\begin_inset FormulaMacro
 | 
						|
\newcommand{\sothree}{\mathfrak{so(3)}}
 | 
						|
{\mathfrak{so(3)}}
 | 
						|
\end_inset
 | 
						|
 | 
						|
 | 
						|
\begin_inset FormulaMacro
 | 
						|
\newcommand{\what}{\hat{\omega}}
 | 
						|
{\hat{\omega}}
 | 
						|
\end_inset
 | 
						|
 | 
						|
 | 
						|
\begin_inset FormulaMacro
 | 
						|
\newcommand{\Skew}[1]{[#1]_{\times}}
 | 
						|
{[#1]_{\times}}
 | 
						|
\end_inset
 | 
						|
 | 
						|
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Plain Layout
 | 
						|
\begin_inset Note Comment
 | 
						|
status open
 | 
						|
 | 
						|
\begin_layout Plain Layout
 | 
						|
SE(3)
 | 
						|
\end_layout
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Plain Layout
 | 
						|
\begin_inset FormulaMacro
 | 
						|
\newcommand{\Rsix}{\mathbb{R}^{6}}
 | 
						|
{\mathbb{R}^{6}}
 | 
						|
\end_inset
 | 
						|
 | 
						|
 | 
						|
\begin_inset FormulaMacro
 | 
						|
\newcommand{\SEthree}{SE(3)}
 | 
						|
{SE(3)}
 | 
						|
\end_inset
 | 
						|
 | 
						|
 | 
						|
\begin_inset FormulaMacro
 | 
						|
\newcommand{\sethree}{\mathfrak{se(3)}}
 | 
						|
{\mathfrak{se(3)}}
 | 
						|
\end_inset
 | 
						|
 | 
						|
 | 
						|
\begin_inset FormulaMacro
 | 
						|
\newcommand{\xihat}{\hat{\xi}}
 | 
						|
{\hat{\xi}}
 | 
						|
\end_inset
 | 
						|
 | 
						|
 | 
						|
\end_layout
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Part
 | 
						|
Theory
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Section
 | 
						|
Optimization
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Standard
 | 
						|
We will be concerned with minimizing a non-linear least squares objective
 | 
						|
 of the form 
 | 
						|
\begin_inset Formula 
 | 
						|
\begin{equation}
 | 
						|
x^{*}=\arg\min_{x}\SqrMah{h(x)}z{\Sigma}\label{eq:objective}
 | 
						|
\end{equation}
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
where 
 | 
						|
\begin_inset Formula $x\in\Man$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 is a point on an 
 | 
						|
\begin_inset Formula $n$
 | 
						|
\end_inset
 | 
						|
 | 
						|
-dimensional manifold (which could be 
 | 
						|
\begin_inset Formula $\Reals n$
 | 
						|
\end_inset
 | 
						|
 | 
						|
, an n-dimensional Lie group 
 | 
						|
\begin_inset Formula $G$
 | 
						|
\end_inset
 | 
						|
 | 
						|
, or a general manifold 
 | 
						|
\begin_inset Formula $\Man)$
 | 
						|
\end_inset
 | 
						|
 | 
						|
, 
 | 
						|
\begin_inset Formula $z\in\Reals m$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 is an observed measurement, 
 | 
						|
\begin_inset Formula $h:\Man\rightarrow\Reals m$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 is a measurement function that predicts 
 | 
						|
\begin_inset Formula $z$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 from 
 | 
						|
\begin_inset Formula $x$
 | 
						|
\end_inset
 | 
						|
 | 
						|
, and 
 | 
						|
\begin_inset Formula $\SqrZMah e{\Sigma}\define e^{T}\Sigma^{-1}e$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 is the squared Mahalanobis distance with covariance 
 | 
						|
\begin_inset Formula $\Sigma$
 | 
						|
\end_inset
 | 
						|
 | 
						|
.
 | 
						|
 
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Standard
 | 
						|
To minimize 
 | 
						|
\begin_inset CommandInset ref
 | 
						|
LatexCommand eqref
 | 
						|
reference "eq:objective"
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
 we need a notion of how the non-linear measurement function 
 | 
						|
\begin_inset Formula $h(x)$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 behaves in the neighborhood of a linearization point 
 | 
						|
\begin_inset Formula $a$
 | 
						|
\end_inset
 | 
						|
 | 
						|
.
 | 
						|
 Loosely speaking, we would like to define an 
 | 
						|
\begin_inset Formula $m\times n$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 Jacobian matrix 
 | 
						|
\begin_inset Formula $H_{a}$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 such that
 | 
						|
\begin_inset Formula 
 | 
						|
\begin{equation}
 | 
						|
h(a\oplus\xi)\approx h(a)+H_{a}\xi\label{eq:LocalBehavior}
 | 
						|
\end{equation}
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
with 
 | 
						|
\begin_inset Formula $\xi\in\Reals n$
 | 
						|
\end_inset
 | 
						|
 | 
						|
, and the operation 
 | 
						|
\begin_inset Formula $\oplus$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 
 | 
						|
\begin_inset Quotes eld
 | 
						|
\end_inset
 | 
						|
 | 
						|
increments
 | 
						|
\begin_inset Quotes erd
 | 
						|
\end_inset
 | 
						|
 | 
						|
 
 | 
						|
\begin_inset Formula $a\in\Man$
 | 
						|
\end_inset
 | 
						|
 | 
						|
.
 | 
						|
 Below we more formally develop this notion, first for functions from 
 | 
						|
\begin_inset Formula $\Multi nm$
 | 
						|
\end_inset
 | 
						|
 | 
						|
, then for Lie groups, and finally for manifolds.
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Standard
 | 
						|
Once equipped with the approximation 
 | 
						|
\begin_inset CommandInset ref
 | 
						|
LatexCommand eqref
 | 
						|
reference "eq:LocalBehavior"
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
, we can minimize the objective function 
 | 
						|
\begin_inset CommandInset ref
 | 
						|
LatexCommand eqref
 | 
						|
reference "eq:objective"
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
 with respect to 
 | 
						|
\begin_inset Formula $\delta x$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 instead:
 | 
						|
\begin_inset Formula 
 | 
						|
\begin{equation}
 | 
						|
\xi^{*}=\arg\min_{\xi}\SqrMah{h(a)+H_{a}\xi}z{\Sigma}\label{eq:ApproximateObjective}
 | 
						|
\end{equation}
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
This can be done by setting the derivative of 
 | 
						|
\begin_inset CommandInset ref
 | 
						|
LatexCommand eqref
 | 
						|
reference "eq:ApproximateObjective"
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
 to zero,
 | 
						|
\begin_inset Note Note
 | 
						|
status collapsed
 | 
						|
 | 
						|
\begin_layout Plain Layout
 | 
						|
 
 | 
						|
\begin_inset Formula 
 | 
						|
\[
 | 
						|
\frac{1}{2}H_{a}^{T}(h(a)+H_{a}\xi-z)=0
 | 
						|
\]
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
 | 
						|
\end_layout
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
 yielding the 
 | 
						|
\series bold
 | 
						|
normal equations
 | 
						|
\series default
 | 
						|
,
 | 
						|
\begin_inset Formula 
 | 
						|
\[
 | 
						|
H_{a}^{T}H_{a}\xi=H_{a}^{T}\left(z-h(a)\right)
 | 
						|
\]
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
which can be solved using Cholesky factorization.
 | 
						|
 Of course, we might have to iterate this multiple times, and use a trust-region
 | 
						|
 method to bound 
 | 
						|
\begin_inset Formula $\xi$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 when the approximation 
 | 
						|
\begin_inset CommandInset ref
 | 
						|
LatexCommand eqref
 | 
						|
reference "eq:LocalBehavior"
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
 is not good.
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Section
 | 
						|
Multivariate Differentiation
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Subsection
 | 
						|
Derivatives
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Standard
 | 
						|
For a vector space 
 | 
						|
\begin_inset Formula $\Reals n$
 | 
						|
\end_inset
 | 
						|
 | 
						|
, the notion of an increment is just done by vector addition
 | 
						|
\begin_inset Formula 
 | 
						|
\[
 | 
						|
a\oplus\xi\define a+\xi
 | 
						|
\]
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
and for the approximation 
 | 
						|
\begin_inset CommandInset ref
 | 
						|
LatexCommand ref
 | 
						|
reference "eq:LocalBehavior"
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
 we will use a Taylor expansion using multivariate differentiation.
 | 
						|
 However, loosely following 
 | 
						|
\begin_inset CommandInset citation
 | 
						|
LatexCommand cite
 | 
						|
key "Spivak65book"
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
, we use a perhaps unfamiliar way to define derivatives:
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Definition
 | 
						|
\begin_inset CommandInset label
 | 
						|
LatexCommand label
 | 
						|
name "def:differentiable"
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
We define a function 
 | 
						|
\begin_inset Formula $f:\Multi nm$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 to be 
 | 
						|
\series bold
 | 
						|
differentiable
 | 
						|
\series default
 | 
						|
 at 
 | 
						|
\begin_inset Formula $a$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 if there exists a matrix 
 | 
						|
\begin_inset Formula $f'(a)\in\Reals{m\times n}$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 such that 
 | 
						|
\begin_inset Formula 
 | 
						|
\[
 | 
						|
\lim_{\delta x\rightarrow0}\frac{\left|f(a)+f'(a)\xi-f(a+\xi)\right|}{\left|\xi\right|}=0
 | 
						|
\]
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
where 
 | 
						|
\begin_inset Formula $\left|e\right|\define\sqrt{e^{T}e}$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 is the usual norm.
 | 
						|
 If 
 | 
						|
\begin_inset Formula $f$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 is differentiable, then the matrix 
 | 
						|
\begin_inset Formula $f'(a)$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 is called the 
 | 
						|
\series bold
 | 
						|
Jacobian matrix
 | 
						|
\series default
 | 
						|
 of 
 | 
						|
\begin_inset Formula $f$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 at 
 | 
						|
\begin_inset Formula $a$
 | 
						|
\end_inset
 | 
						|
 | 
						|
, and the linear map 
 | 
						|
\begin_inset Formula $Df_{a}:\xi\mapsto f'(a)\xi$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 is called the 
 | 
						|
\series bold
 | 
						|
derivative
 | 
						|
\series default
 | 
						|
 of 
 | 
						|
\begin_inset Formula $f$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 at 
 | 
						|
\begin_inset Formula $a$
 | 
						|
\end_inset
 | 
						|
 | 
						|
.
 | 
						|
 When no confusion is likely, we use the notation 
 | 
						|
\begin_inset Formula $F_{a}\define f'(a)$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 to stress that 
 | 
						|
\begin_inset Formula $f'(a)$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 is a matrix.
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Standard
 | 
						|
The benefit of using this definition is that it generalizes the notion of
 | 
						|
 a scalar derivative 
 | 
						|
\begin_inset Formula $f'(a):\Rone\rightarrow\Rone$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 to multivariate functions from 
 | 
						|
\begin_inset Formula $\Multi nm$
 | 
						|
\end_inset
 | 
						|
 | 
						|
.
 | 
						|
 In particular, the derivative 
 | 
						|
\begin_inset Formula $Df_{a}$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 maps vector increments 
 | 
						|
\begin_inset Formula $\xi$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 on 
 | 
						|
\begin_inset Formula $a$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 to increments 
 | 
						|
\begin_inset Formula $f'(a)\xi$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 on 
 | 
						|
\begin_inset Formula $f(a)$
 | 
						|
\end_inset
 | 
						|
 | 
						|
, such that this linear map locally approximates 
 | 
						|
\begin_inset Formula $f$
 | 
						|
\end_inset
 | 
						|
 | 
						|
:
 | 
						|
\begin_inset Formula 
 | 
						|
\[
 | 
						|
f(a+\xi)\approx f(a)+f'(a)\xi
 | 
						|
\]
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Example
 | 
						|
\begin_inset CommandInset label
 | 
						|
LatexCommand label
 | 
						|
name "ex:projection"
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
The function 
 | 
						|
\begin_inset Formula $\pi:(x,y,z)\mapsto(x/z,y/z)$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 projects a 3D point 
 | 
						|
\begin_inset Formula $(x,y,z)$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 to the image plane, and has the Jacobian matrix
 | 
						|
\begin_inset Formula 
 | 
						|
\[
 | 
						|
\pi'(x,y,z)=\frac{1}{z}\left[\begin{array}{ccc}
 | 
						|
1 & 0 & -x/z\\
 | 
						|
0 & 1 & -y/z
 | 
						|
\end{array}\right]
 | 
						|
\]
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Subsection
 | 
						|
Properties of Derivatives
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Standard
 | 
						|
This notion of a multivariate derivative obeys the usual rules:
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Theorem
 | 
						|
(Chain rule) If 
 | 
						|
\begin_inset Formula $f:\Multi np$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 is differentiable at 
 | 
						|
\begin_inset Formula $a$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 and 
 | 
						|
\begin_inset Formula $g:\Multi pm$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 is differentiable at 
 | 
						|
\begin_inset Formula $f(a)$
 | 
						|
\end_inset
 | 
						|
 | 
						|
,
 | 
						|
\begin_inset Note Note
 | 
						|
status collapsed
 | 
						|
 | 
						|
\begin_layout Plain Layout
 | 
						|
 | 
						|
\family roman
 | 
						|
\series medium
 | 
						|
\shape up
 | 
						|
\size normal
 | 
						|
\emph off
 | 
						|
\bar no
 | 
						|
\strikeout off
 | 
						|
\uuline off
 | 
						|
\uwave off
 | 
						|
\noun off
 | 
						|
\color none
 | 
						|
 then 
 | 
						|
\begin_inset Formula $D(g\circ f)_{a}=Dg_{f(a)}\circ Df_{a}$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 and
 | 
						|
\end_layout
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
 then the Jacobian matrix 
 | 
						|
\begin_inset Formula $H_{a}$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 of 
 | 
						|
\begin_inset Formula $h=g\circ f$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 at 
 | 
						|
\begin_inset Formula $a$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 is the 
 | 
						|
\begin_inset Formula $m\times n$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 matrix product 
 | 
						|
\begin_inset Formula 
 | 
						|
\[
 | 
						|
H_{a}=G_{f(a)}F_{a}
 | 
						|
\]
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
where 
 | 
						|
\begin_inset Formula $G_{f(a)}$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 is the 
 | 
						|
\begin_inset Formula $m\times p$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 Jacobian matrix of 
 | 
						|
\begin_inset Formula $g$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 evaluated at 
 | 
						|
\begin_inset Formula $f(a)$
 | 
						|
\end_inset
 | 
						|
 | 
						|
, and 
 | 
						|
\begin_inset Formula $F_{a}$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 is the 
 | 
						|
\begin_inset Formula $p\times n$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 Jacobian matrix of 
 | 
						|
\begin_inset Formula $f$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 evaluated at 
 | 
						|
\begin_inset Formula $a$
 | 
						|
\end_inset
 | 
						|
 | 
						|
.
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Proof
 | 
						|
See 
 | 
						|
\begin_inset CommandInset citation
 | 
						|
LatexCommand cite
 | 
						|
key "Spivak65book"
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Example
 | 
						|
\begin_inset CommandInset label
 | 
						|
LatexCommand label
 | 
						|
name "ex:chain-rule"
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
If we follow the projection 
 | 
						|
\begin_inset Formula $\pi$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 by a calibration step 
 | 
						|
\begin_inset Formula $\gamma:(x,y)\mapsto(u_{0}+fx,u_{0}+fy)$
 | 
						|
\end_inset
 | 
						|
 | 
						|
, with 
 | 
						|
\begin_inset Formula 
 | 
						|
\[
 | 
						|
\gamma'(x,y)=\left[\begin{array}{cc}
 | 
						|
f & 0\\
 | 
						|
0 & f
 | 
						|
\end{array}\right]
 | 
						|
\]
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
then the combined function 
 | 
						|
\begin_inset Formula $\gamma\circ\pi$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 has the Jacobian matrix
 | 
						|
\begin_inset Formula 
 | 
						|
\[
 | 
						|
(\gamma\circ\pi)'(x,y)=\frac{f}{z}\left[\begin{array}{ccc}
 | 
						|
1 & 0 & -x/z\\
 | 
						|
0 & 1 & -y/z
 | 
						|
\end{array}\right]
 | 
						|
\]
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Theorem
 | 
						|
(Inverse) If 
 | 
						|
\begin_inset Formula $f:\Multi nn$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 is differentiable and has a differentiable inverse 
 | 
						|
\begin_inset Formula $g\define f^{-1}$
 | 
						|
\end_inset
 | 
						|
 | 
						|
, then its Jacobian matrix 
 | 
						|
\begin_inset Formula $G_{a}$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 at 
 | 
						|
\begin_inset Formula $a$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 is just the inverse of that of 
 | 
						|
\begin_inset Formula $f$
 | 
						|
\end_inset
 | 
						|
 | 
						|
, evaluated at 
 | 
						|
\begin_inset Formula $g(a)$
 | 
						|
\end_inset
 | 
						|
 | 
						|
:
 | 
						|
\begin_inset Formula 
 | 
						|
\[
 | 
						|
G_{a}=\left[F_{g(a)}\right]^{-1}
 | 
						|
\]
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Proof
 | 
						|
See 
 | 
						|
\begin_inset CommandInset citation
 | 
						|
LatexCommand cite
 | 
						|
key "Spivak65book"
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Example
 | 
						|
\begin_inset CommandInset label
 | 
						|
LatexCommand label
 | 
						|
name "ex:inverse"
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
The function 
 | 
						|
\begin_inset Formula $f:(x,y)\mapsto(x^{2},xy)$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 has the Jacobian matrix
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Example
 | 
						|
\begin_inset Formula 
 | 
						|
\[
 | 
						|
F_{(x,y)}=\left[\begin{array}{cc}
 | 
						|
2x & 0\\
 | 
						|
y & x
 | 
						|
\end{array}\right]
 | 
						|
\]
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
and, for 
 | 
						|
\begin_inset Formula $x\geq0$
 | 
						|
\end_inset
 | 
						|
 | 
						|
, its inverse is the function 
 | 
						|
\begin_inset Formula $g:(x,y)\mapsto(x^{1/2},x^{-1/2}y)$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 with the Jacobian matrix
 | 
						|
\begin_inset Formula 
 | 
						|
\[
 | 
						|
G_{(x,y)}=\frac{1}{2}\left[\begin{array}{cc}
 | 
						|
x^{-1/2} & 0\\
 | 
						|
-x^{-3/2}y & 2x^{-1/2}
 | 
						|
\end{array}\right]
 | 
						|
\]
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
It is easily verified that
 | 
						|
\begin_inset Formula 
 | 
						|
\[
 | 
						|
g'(a,b)f'(a^{1/2},a^{-1/2}b)=\frac{1}{2}\left[\begin{array}{cc}
 | 
						|
a^{-1/2} & 0\\
 | 
						|
-a^{-3/2}b & 2a^{-1/2}
 | 
						|
\end{array}\right]\left[\begin{array}{cc}
 | 
						|
2a^{1/2} & 0\\
 | 
						|
a^{-1/2}b & a^{1/2}
 | 
						|
\end{array}\right]=\left[\begin{array}{cc}
 | 
						|
1 & 0\\
 | 
						|
0 & 1
 | 
						|
\end{array}\right]
 | 
						|
\]
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Problem
 | 
						|
Verify the above for 
 | 
						|
\begin_inset Formula $(a,b)=(4,6)$
 | 
						|
\end_inset
 | 
						|
 | 
						|
.
 | 
						|
 Sketch the situation graphically to get insight.
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Subsection
 | 
						|
Computing Multivariate Derivatives
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Standard
 | 
						|
Computing derivatives is made easy by defining the concept of a partial
 | 
						|
 derivative:
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Definition
 | 
						|
For 
 | 
						|
\begin_inset Formula $f:\OneD n$
 | 
						|
\end_inset
 | 
						|
 | 
						|
, the 
 | 
						|
\series bold
 | 
						|
partial derivative
 | 
						|
\series default
 | 
						|
 of 
 | 
						|
\begin_inset Formula $f$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 at 
 | 
						|
\begin_inset Formula $a$
 | 
						|
\end_inset
 | 
						|
 | 
						|
,
 | 
						|
\series bold
 | 
						|
 
 | 
						|
\series default
 | 
						|
 | 
						|
\begin_inset Formula 
 | 
						|
\[
 | 
						|
D_{j}f(a)\define\lim_{h\rightarrow0}\frac{f\left(a^{1},\ldots,a^{j}+h,\ldots,a^{n}\right)-f\left(a^{1},\ldots,a^{n}\right)}{h}
 | 
						|
\]
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
which is the ordinary derivative of the scalar function 
 | 
						|
\begin_inset Formula $g(x)\define f\left(a^{1},\ldots,x,\ldots,a^{n}\right)$
 | 
						|
\end_inset
 | 
						|
 | 
						|
.
 | 
						|
 
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Standard
 | 
						|
Using this definition, one can show that the Jacobian matrix 
 | 
						|
\begin_inset Formula $F_{a}$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 of a differentiable 
 | 
						|
\emph on
 | 
						|
multivariate
 | 
						|
\emph default
 | 
						|
 function 
 | 
						|
\begin_inset Formula $f:\Multi nm$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 consists simply of the 
 | 
						|
\begin_inset Formula $m\times n$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 partial derivatives 
 | 
						|
\begin_inset Formula $D_{j}f^{i}(a)$
 | 
						|
\end_inset
 | 
						|
 | 
						|
, evaluated at 
 | 
						|
\begin_inset Formula $a\in\Reals n$
 | 
						|
\end_inset
 | 
						|
 | 
						|
:
 | 
						|
\begin_inset Formula 
 | 
						|
\[
 | 
						|
F_{a}=\left[\begin{array}{ccc}
 | 
						|
D_{1}f^{1}(a) & \cdots & D_{n}f^{1}(a)\\
 | 
						|
\vdots & \ddots & \vdots\\
 | 
						|
D_{1}f^{m}(a) & \ldots & D_{n}f^{m}(a)
 | 
						|
\end{array}\right]
 | 
						|
\]
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Problem
 | 
						|
Verify the derivatives in Examples 
 | 
						|
\begin_inset CommandInset ref
 | 
						|
LatexCommand ref
 | 
						|
reference "ex:projection"
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
 to 
 | 
						|
\begin_inset CommandInset ref
 | 
						|
LatexCommand ref
 | 
						|
reference "ex:inverse"
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
.
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Standard
 | 
						|
\begin_inset Newpage pagebreak
 | 
						|
\end_inset
 | 
						|
 | 
						|
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Section
 | 
						|
Multivariate Functions on Lie Groups
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Subsection
 | 
						|
Lie Groups
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Standard
 | 
						|
Lie groups are not as easy to treat as the vector space 
 | 
						|
\begin_inset Formula $\Reals n$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 but nevertheless have a lot of structure.
 | 
						|
 To generalize the concept of the total derivative above we just need to
 | 
						|
 replace 
 | 
						|
\begin_inset Formula $a\oplus\xi$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 in 
 | 
						|
\begin_inset CommandInset ref
 | 
						|
LatexCommand eqref
 | 
						|
reference "eq:ApproximateObjective"
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
 with a suitable operation in the Lie group 
 | 
						|
\begin_inset Formula $G$
 | 
						|
\end_inset
 | 
						|
 | 
						|
.
 | 
						|
 In particular, the notion of an exponential map allows us to define an
 | 
						|
 incremental transformation as tracing out a geodesic curve on the group
 | 
						|
 manifold along a certain 
 | 
						|
\series bold
 | 
						|
tangent vector
 | 
						|
\series default
 | 
						|
 
 | 
						|
\begin_inset Formula $\xi$
 | 
						|
\end_inset
 | 
						|
 | 
						|
, 
 | 
						|
\begin_inset Formula 
 | 
						|
\[
 | 
						|
a\oplus\xi\define a\exp\left(\hat{\xi}\right)
 | 
						|
\]
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
with 
 | 
						|
\begin_inset Formula $\xi\in\Reals n$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 for an 
 | 
						|
\begin_inset Formula $n$
 | 
						|
\end_inset
 | 
						|
 | 
						|
-dimensional Lie group, 
 | 
						|
\begin_inset Formula $\hat{\xi}\in\mathfrak{g}$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 the Lie algebra element corresponding to the vector 
 | 
						|
\begin_inset Formula $\xi$
 | 
						|
\end_inset
 | 
						|
 | 
						|
, and 
 | 
						|
\begin_inset Formula $\exp\hat{\xi}$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 the exponential map.
 | 
						|
 Note that if 
 | 
						|
\begin_inset Formula $G$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 is equal to 
 | 
						|
\begin_inset Formula $\Reals n$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 then composing with the exponential map 
 | 
						|
\begin_inset Formula $ae^{\xihat}$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 is just vector addition 
 | 
						|
\begin_inset Formula $a+\xi$
 | 
						|
\end_inset
 | 
						|
 | 
						|
.
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Example
 | 
						|
For the Lie group 
 | 
						|
\begin_inset Formula $\SOthree$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 of 3D rotations the vector 
 | 
						|
\begin_inset Formula $\xi$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 is denoted as 
 | 
						|
\begin_inset Formula $\omega$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 and represents an angular displacement.
 | 
						|
 The Lie algebra element 
 | 
						|
\begin_inset Formula $\xihat$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 is a skew symmetric matrix denoted as 
 | 
						|
\begin_inset Formula $\Skew{\omega}\in\sothree$
 | 
						|
\end_inset
 | 
						|
 | 
						|
, and is given by
 | 
						|
\begin_inset Formula 
 | 
						|
\[
 | 
						|
\Skew{\omega}=\left[\begin{array}{ccc}
 | 
						|
0 & -\omega_{z} & \omega_{y}\\
 | 
						|
\omega_{z} & 0 & -\omega_{x}\\
 | 
						|
-\omega_{y} & \omega_{x} & 0
 | 
						|
\end{array}\right]
 | 
						|
\]
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
Finally, the increment 
 | 
						|
\begin_inset Formula $a\oplus\xi=ae^{\xihat}$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 corresponds to an incremental rotation 
 | 
						|
\begin_inset Formula $R\oplus\omega=Re^{\Skew{\omega}}$
 | 
						|
\end_inset
 | 
						|
 | 
						|
.
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Subsection
 | 
						|
Derivatives
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Standard
 | 
						|
We can generalize Definition 
 | 
						|
\begin_inset CommandInset ref
 | 
						|
LatexCommand ref
 | 
						|
reference "def:differentiable"
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
 to map exponential coordinates 
 | 
						|
\begin_inset Formula $\xi$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 to increments 
 | 
						|
\begin_inset Formula $f'(a)\xi$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 on 
 | 
						|
\begin_inset Formula $f(a)$
 | 
						|
\end_inset
 | 
						|
 | 
						|
, such that the linear map 
 | 
						|
\begin_inset Formula $Df_{a}$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 locally approximates a function 
 | 
						|
\begin_inset Formula $f$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 from 
 | 
						|
\begin_inset Formula $G$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 to 
 | 
						|
\begin_inset Formula $\Reals m$
 | 
						|
\end_inset
 | 
						|
 | 
						|
:
 | 
						|
\begin_inset Formula 
 | 
						|
\[
 | 
						|
f(ae^{\xihat})\approx f(a)+f'(a)\xi
 | 
						|
\]
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Definition
 | 
						|
We define a function 
 | 
						|
\begin_inset Formula $f:G\rightarrow\Reals m$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 to be 
 | 
						|
\series bold
 | 
						|
differentiable
 | 
						|
\series default
 | 
						|
 at 
 | 
						|
\begin_inset Formula $a\in G$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 if there exists a matrix 
 | 
						|
\begin_inset Formula $f'(a)\in\Reals{m\times n}$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 such that
 | 
						|
\begin_inset Formula 
 | 
						|
\[
 | 
						|
\lim_{\xi\rightarrow0}\frac{\left|f(a)+f'(a)\xi-f(ae^{\hat{\xi}})\right|}{\left|\xi\right|}=0
 | 
						|
\]
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
If 
 | 
						|
\begin_inset Formula $f$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 is differentiable, then the matrix 
 | 
						|
\begin_inset Formula $f'(a)$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 is called the 
 | 
						|
\series bold
 | 
						|
Jacobian matrix
 | 
						|
\series default
 | 
						|
 of 
 | 
						|
\begin_inset Formula $f$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 at 
 | 
						|
\begin_inset Formula $a$
 | 
						|
\end_inset
 | 
						|
 | 
						|
, and the linear map 
 | 
						|
\begin_inset Formula $Df_{a}:\xi\mapsto f'(a)\xi$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 is called the 
 | 
						|
\series bold
 | 
						|
derivative
 | 
						|
\series default
 | 
						|
 of 
 | 
						|
\begin_inset Formula $f$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 at 
 | 
						|
\begin_inset Formula $a$
 | 
						|
\end_inset
 | 
						|
 | 
						|
.
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Standard
 | 
						|
Note that the vectors 
 | 
						|
\begin_inset Formula $\xi$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 can be viewed as lying in the tangent space to 
 | 
						|
\begin_inset Formula $G$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 at 
 | 
						|
\begin_inset Formula $a$
 | 
						|
\end_inset
 | 
						|
 | 
						|
, but defining this rigorously would take us on a longer tour of differential
 | 
						|
 geometry.
 | 
						|
 Informally, 
 | 
						|
\begin_inset Formula $\xi$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 is simply the direction, in a local coordinate frame, that is locally tangent
 | 
						|
 at 
 | 
						|
\begin_inset Formula $a$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 to a geodesic curve 
 | 
						|
\begin_inset Formula $\gamma:t\mapsto ae^{\widehat{t\xi}}$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 traced out by the exponential map, with 
 | 
						|
\begin_inset Formula $\gamma(0)=a$
 | 
						|
\end_inset
 | 
						|
 | 
						|
.
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Subsection
 | 
						|
Derivative of an Action
 | 
						|
\begin_inset CommandInset label
 | 
						|
LatexCommand label
 | 
						|
name "sec:Derivatives-of-Actions"
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Standard
 | 
						|
The (usual) action of an 
 | 
						|
\begin_inset Formula $n$
 | 
						|
\end_inset
 | 
						|
 | 
						|
-dimensional matrix group 
 | 
						|
\begin_inset Formula $G$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 is matrix-vector multiplication on 
 | 
						|
\begin_inset Formula $\mathbb{R}^{n}$
 | 
						|
\end_inset
 | 
						|
 | 
						|
, i.e., 
 | 
						|
\begin_inset Formula $f:G\times\Reals n\rightarrow\Reals n$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 with 
 | 
						|
\begin_inset Formula 
 | 
						|
\[
 | 
						|
f(T,p)=Tp
 | 
						|
\]
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
Since this is a function defined on the product 
 | 
						|
\begin_inset Formula $G\times\Reals n$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 the derivative is a linear transformation 
 | 
						|
\begin_inset Formula $Df:\Multi{2n}n$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 with
 | 
						|
\begin_inset Formula 
 | 
						|
\[
 | 
						|
Df_{(T,p)}\left(\xi,\delta p\right)=D_{1}f_{(T,p)}\left(\xi\right)+D_{2}f_{(T,p)}\left(\delta p\right)
 | 
						|
\]
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Theorem
 | 
						|
\begin_inset CommandInset label
 | 
						|
LatexCommand label
 | 
						|
name "th:Action"
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
The Jacobian matrix of the group action
 | 
						|
\begin_inset Formula $f(T,p)=Tp$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 at 
 | 
						|
\begin_inset Formula $(T,p)$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 is given by
 | 
						|
\begin_inset Formula 
 | 
						|
\[
 | 
						|
F_{(T,p)}=\left[\begin{array}{cc}
 | 
						|
TH(p) & T\end{array}\right]=T\left[\begin{array}{cc}
 | 
						|
H(p) & I_{n}\end{array}\right]
 | 
						|
\]
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
with 
 | 
						|
\begin_inset Formula $H:\Reals n\rightarrow\Reals{n\times n}$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 a linear mapping that depends on 
 | 
						|
\begin_inset Formula $p$
 | 
						|
\end_inset
 | 
						|
 | 
						|
, and 
 | 
						|
\begin_inset Formula $I_{n}$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 the 
 | 
						|
\begin_inset Formula $n\times n$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 identity matrix.
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Proof
 | 
						|
First, the derivative 
 | 
						|
\begin_inset Formula $D_{2}f$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 with respect to 
 | 
						|
\begin_inset Formula $p$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 is easy, as its matrix is simply T:
 | 
						|
\begin_inset Formula 
 | 
						|
\[
 | 
						|
f(T,p+\delta p)=T(p+\delta p)=Tp+T\delta p=f(T,p)+D_{2}f(\delta p)
 | 
						|
\]
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
For the derivative 
 | 
						|
\begin_inset Formula $D_{1}f$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 with respect to a change in the first argument 
 | 
						|
\begin_inset Formula $T$
 | 
						|
\end_inset
 | 
						|
 | 
						|
, we want to find the linear map 
 | 
						|
\begin_inset Formula $D_{1}f$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 such that
 | 
						|
\family roman
 | 
						|
\series medium
 | 
						|
\shape up
 | 
						|
\size normal
 | 
						|
\emph off
 | 
						|
\bar no
 | 
						|
\strikeout off
 | 
						|
\uuline off
 | 
						|
\uwave off
 | 
						|
\noun off
 | 
						|
\color none
 | 
						|
 | 
						|
\begin_inset Formula 
 | 
						|
\[
 | 
						|
Tp+D_{1}f(\xi)\approx f(Te^{\hat{\xi}},p)=Te^{\hat{\xi}}p
 | 
						|
\]
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
 | 
						|
\family default
 | 
						|
\series default
 | 
						|
\shape default
 | 
						|
\size default
 | 
						|
\emph default
 | 
						|
\bar default
 | 
						|
\strikeout default
 | 
						|
\uuline default
 | 
						|
\uwave default
 | 
						|
\noun default
 | 
						|
\color inherit
 | 
						|
Since the matrix exponential is given by the series 
 | 
						|
\begin_inset Formula $e^{A}=I+A+\frac{A^{2}}{2!}+\frac{A^{3}}{3!}+\ldots$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 we have, to first order
 | 
						|
\begin_inset Formula 
 | 
						|
\[
 | 
						|
Te^{\hat{\xi}}p\approx T(I+\hat{\xi})p=Tp+T\hat{\xi}p
 | 
						|
\]
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
and 
 | 
						|
\begin_inset Formula $D_{1}f(\xi)=T\hat{\xi}p$
 | 
						|
\end_inset
 | 
						|
 | 
						|
.
 | 
						|
 
 | 
						|
\begin_inset Note Note
 | 
						|
status collapsed
 | 
						|
 | 
						|
\begin_layout Plain Layout
 | 
						|
Note also that
 | 
						|
\begin_inset Formula 
 | 
						|
\[
 | 
						|
T\hat{\xi}p=\left(T\hat{\xi}T^{-1}\right)Tp=\left(\Ad T\xihat\right)\left(Tp\right)
 | 
						|
\]
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
 | 
						|
\end_layout
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
Hence, to complete the proof, we need to show that 
 | 
						|
\begin_inset Formula 
 | 
						|
\begin{equation}
 | 
						|
\xihat p=H(p)\xi\label{eq:Hp}
 | 
						|
\end{equation}
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
with 
 | 
						|
\begin_inset Formula $H(p)$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 an 
 | 
						|
\begin_inset Formula $n\times n$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 matrix that depends on 
 | 
						|
\begin_inset Formula $p$
 | 
						|
\end_inset
 | 
						|
 | 
						|
.
 | 
						|
 Expressing the map 
 | 
						|
\begin_inset Formula $\xi\rightarrow\hat{\xi}$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 in terms of the Lie algebra generators 
 | 
						|
\begin_inset Formula $G^{i}$
 | 
						|
\end_inset
 | 
						|
 | 
						|
, using tensors and Einstein summation, we have 
 | 
						|
\begin_inset Formula $\hat{\xi}_{j}^{i}=G_{jk}^{i}\xi^{k}$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 allowing us to calculate 
 | 
						|
\family roman
 | 
						|
\series medium
 | 
						|
\shape up
 | 
						|
\size normal
 | 
						|
\emph off
 | 
						|
\bar no
 | 
						|
\noun off
 | 
						|
\color none
 | 
						|
 | 
						|
\begin_inset Formula $\hat{\xi}p$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 | 
						|
\family default
 | 
						|
\series default
 | 
						|
\shape default
 | 
						|
\size default
 | 
						|
\emph default
 | 
						|
\bar default
 | 
						|
\noun default
 | 
						|
\color inherit
 | 
						|
 as
 | 
						|
\begin_inset Formula 
 | 
						|
\[
 | 
						|
\left(\hat{\xi}p\right)^{i}=\hat{\xi}_{j}^{i}p^{j}=G_{jk}^{i}\xi^{k}p^{j}=\left(G_{jk}^{i}p^{j}\right)\xi^{k}=H_{k}^{i}(p)\xi^{k}
 | 
						|
\]
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Example
 | 
						|
For 3D rotations 
 | 
						|
\begin_inset Formula $R\in\SOthree$
 | 
						|
\end_inset
 | 
						|
 | 
						|
, we have 
 | 
						|
\begin_inset Formula $\hat{\omega}=\Skew{\omega}$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 and 
 | 
						|
\begin_inset Formula 
 | 
						|
\[
 | 
						|
G_{k=1}:\left(\begin{array}{ccc}
 | 
						|
0 & 0 & 0\\
 | 
						|
0 & 0 & -1\\
 | 
						|
0 & 1 & 0
 | 
						|
\end{array}\right)\mbox{}G_{k=2}:\left(\begin{array}{ccc}
 | 
						|
0 & 0 & 1\\
 | 
						|
0 & 0 & 0\\
 | 
						|
-1 & 0 & 0
 | 
						|
\end{array}\right)\mbox{ }G_{k=3}:\left(\begin{array}{ccc}
 | 
						|
0 & -1 & 0\\
 | 
						|
1 & 0 & 0\\
 | 
						|
0 & 0 & 0
 | 
						|
\end{array}\right)
 | 
						|
\]
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
 | 
						|
\family roman
 | 
						|
\series medium
 | 
						|
\shape up
 | 
						|
\size normal
 | 
						|
\emph off
 | 
						|
\bar no
 | 
						|
\noun off
 | 
						|
\color none
 | 
						|
The matrices 
 | 
						|
\begin_inset Formula $\left(G_{k}^{i}\right)_{j}$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 are obtained by assembling the 
 | 
						|
\begin_inset Formula $j^{th}$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 columns of the generators above, yielding 
 | 
						|
\begin_inset Formula $H(p)$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 equal to:
 | 
						|
\begin_inset Formula 
 | 
						|
\[
 | 
						|
\left(\begin{array}{ccc}
 | 
						|
0 & 0 & 0\\
 | 
						|
0 & 0 & 1\\
 | 
						|
0 & -1 & 0
 | 
						|
\end{array}\right)p^{1}+\left(\begin{array}{ccc}
 | 
						|
0 & 0 & -1\\
 | 
						|
0 & 0 & 0\\
 | 
						|
1 & 0 & 0
 | 
						|
\end{array}\right)p^{2}+\left(\begin{array}{ccc}
 | 
						|
0 & 1 & 0\\
 | 
						|
-1 & 0 & 0\\
 | 
						|
0 & 0 & 0
 | 
						|
\end{array}\right)p^{3}=\left(\begin{array}{ccc}
 | 
						|
0 & p^{3} & -p^{2}\\
 | 
						|
-p^{3} & 0 & p^{1}\\
 | 
						|
p^{2} & -p^{1} & 0
 | 
						|
\end{array}\right)=\Skew{-p}
 | 
						|
\]
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
 | 
						|
\family default
 | 
						|
\series default
 | 
						|
\shape default
 | 
						|
\size default
 | 
						|
\emph default
 | 
						|
\bar default
 | 
						|
\noun default
 | 
						|
\color inherit
 | 
						|
Hence, the Jacobian matrix of 
 | 
						|
\begin_inset Formula $f(R,p)=Rp$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 is given by
 | 
						|
\begin_inset Formula 
 | 
						|
\[
 | 
						|
F_{(R,p)}=R\left(\begin{array}{cc}
 | 
						|
\Skew{-p} & I_{3}\end{array}\right)
 | 
						|
\]
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Subsection
 | 
						|
Derivative of an Inverse Action
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Standard
 | 
						|
Applying the action by the inverse of 
 | 
						|
\begin_inset Formula $T\in G$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 yields a function 
 | 
						|
\begin_inset Formula $g:G\times\Reals n\rightarrow\Reals n$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 defined by 
 | 
						|
\begin_inset Formula 
 | 
						|
\[
 | 
						|
g(T,p)=T^{-1}p
 | 
						|
\]
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Theorem
 | 
						|
\begin_inset CommandInset label
 | 
						|
LatexCommand label
 | 
						|
name "Th:InverseAction"
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
The Jacobian matrix of the inverse group action 
 | 
						|
\begin_inset Formula $g(T,p)=T^{-1}p$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 is given by
 | 
						|
\begin_inset Formula 
 | 
						|
\[
 | 
						|
G_{(T,p)}=\left[\begin{array}{cc}
 | 
						|
-H(T^{-1}p) & T^{-1}\end{array}\right]
 | 
						|
\]
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
where 
 | 
						|
\begin_inset Formula $H:\Reals n\rightarrow\Reals{n\times n}$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 is the same mapping as before.
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Proof
 | 
						|
Again, the derivative 
 | 
						|
\begin_inset Formula $D_{2}g$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 with respect to in 
 | 
						|
\begin_inset Formula $p$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 is easy, the matrix of which is simply 
 | 
						|
\begin_inset Formula $T^{-1}$
 | 
						|
\end_inset
 | 
						|
 | 
						|
:
 | 
						|
\begin_inset Formula 
 | 
						|
\[
 | 
						|
g(T,p+\delta p)=T^{-1}(p+\delta p)=T^{-1}p+T^{-1}\delta p=g(T,p)+D_{2}g(\delta p)
 | 
						|
\]
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
Conversely, a change in 
 | 
						|
\begin_inset Formula $T$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 yields
 | 
						|
\begin_inset Formula 
 | 
						|
\[
 | 
						|
g(Te^{\xihat},p)=\left(Te^{\xihat}\right)^{-1}p=e^{-\xihat}T^{-1}p
 | 
						|
\]
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
Similar to before, if we expand the matrix exponential we get
 | 
						|
\begin_inset Formula 
 | 
						|
\[
 | 
						|
e^{-A}=I-A+\frac{A^{2}}{2!}-\frac{A^{3}}{3!}+\ldots
 | 
						|
\]
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
so
 | 
						|
\begin_inset Formula 
 | 
						|
\[
 | 
						|
e^{-\xihat}T^{-1}p\approx(I-\xihat)T^{-1}p=g(T,p)-\xihat\left(T^{-1}p\right)
 | 
						|
\]
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Example
 | 
						|
For 3D rotations 
 | 
						|
\begin_inset Formula $R\in\SOthree$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 we have 
 | 
						|
\begin_inset Formula $R^{-1}=R^{T}$
 | 
						|
\end_inset
 | 
						|
 | 
						|
, 
 | 
						|
\begin_inset Formula $H(p)=-\Skew p$
 | 
						|
\end_inset
 | 
						|
 | 
						|
, and hence the Jacobian matrix of 
 | 
						|
\begin_inset Formula $g(R,p)=R^{T}p$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 is given by
 | 
						|
\begin_inset Formula 
 | 
						|
\[
 | 
						|
G_{(R,p)}=\left(\begin{array}{cc}
 | 
						|
\Skew{R^{T}p} & R^{T}\end{array}\right)
 | 
						|
\]
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Standard
 | 
						|
\begin_inset Note Note
 | 
						|
status collapsed
 | 
						|
 | 
						|
\begin_layout Plain Layout
 | 
						|
My earlier attempt: because the wedge operator is linear, we have
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Plain Layout
 | 
						|
\begin_inset Formula 
 | 
						|
\begin{eqnarray*}
 | 
						|
f(\xi+x) & = & \exp\widehat{\left(\xi+x\right)}\\
 | 
						|
 & = & \exp\left(\xihat+\hat{x}\right)
 | 
						|
\end{eqnarray*}
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
However, except for commutative Lie groups, it is not true that 
 | 
						|
\begin_inset Formula $\exp\left(\xihat+\hat{x}\right)=\exp\xihat\exp\hat{x}$
 | 
						|
\end_inset
 | 
						|
 | 
						|
.
 | 
						|
 However, if we expand the matrix exponential to second order and assume
 | 
						|
 
 | 
						|
\begin_inset Formula $x\rightarrow0$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 we do have
 | 
						|
\begin_inset Formula 
 | 
						|
\[
 | 
						|
\exp\left(\xihat+\hat{x}\right)\approx I+\xihat+\hat{x}+\frac{1}{2}\xihat^{2}+\xhat\xihat
 | 
						|
\]
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
Now, if we ask what 
 | 
						|
\begin_inset Formula $\hat{y}$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 would effect the same change:
 | 
						|
\begin_inset Formula 
 | 
						|
\begin{eqnarray*}
 | 
						|
\exp\xihat\exp\yhat & = & I+\xihat+\hat{x}+\frac{1}{2}\xihat^{2}+\xhat\xihat\\
 | 
						|
\exp\xihat(I+\yhat) & = & I+\xihat+\hat{x}+\frac{1}{2}\xihat^{2}+\xhat\xihat\\
 | 
						|
\left(\exp\xihat\right)\yhat & = & \xhat+\xhat\xihat
 | 
						|
\end{eqnarray*}
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
 | 
						|
\end_layout
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Section
 | 
						|
Instantaneous Velocity
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Standard
 | 
						|
For matrix Lie groups, if we have a matrix 
 | 
						|
\begin_inset Formula $T_{b}^{n}(t)$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 that depends on a parameter 
 | 
						|
\begin_inset Formula $t$
 | 
						|
\end_inset
 | 
						|
 | 
						|
, i.e., 
 | 
						|
\begin_inset Formula $T_{b}^{n}(t)$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 follows a curve on the manifold, then it would be of interest to find the
 | 
						|
 velocity of a point 
 | 
						|
\begin_inset Formula $q^{n}(t)=T_{b}^{n}(t)p^{b}$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 acted upon by 
 | 
						|
\begin_inset Formula $T_{b}^{n}(t)$
 | 
						|
\end_inset
 | 
						|
 | 
						|
.
 | 
						|
 We can express the velocity of 
 | 
						|
\begin_inset Formula $q(t)$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 in both the n-frame and b-frame: 
 | 
						|
\begin_inset Formula 
 | 
						|
\[
 | 
						|
\dot{q}^{n}=\dot{T}_{b}^{n}p^{b}=\dot{T}_{b}^{n}\left(T_{b}^{n}\right)^{-1}p^{n}\mbox{\,\,\,\,\ and\,\,\,\,}\dot{q}^{b}=\left(T_{b}^{n}\right)^{-1}\dot{q}^{n}=\left(T_{b}^{n}\right)^{-1}\dot{T}_{b}^{n}p^{b}
 | 
						|
\]
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
Both the matrices 
 | 
						|
\begin_inset Formula $\xihat_{nb}^{n}\define\dot{T}_{b}^{n}\left(T_{b}^{n}\right)^{-1}$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 and 
 | 
						|
\begin_inset Formula $\xihat_{nb}^{b}\define\left(T_{b}^{n}\right)^{-1}\dot{T}_{b}^{n}$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 are skew-symmetric Lie algebra elements that describe the 
 | 
						|
\series bold
 | 
						|
instantaneous velocity 
 | 
						|
\series default
 | 
						|
 | 
						|
\begin_inset CommandInset citation
 | 
						|
LatexCommand cite
 | 
						|
after "page 51 for rotations, page 419 for SE(3)"
 | 
						|
key "Murray94book"
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
.
 | 
						|
 We will revisit this for both rotations and rigid 3D transformations.
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Section
 | 
						|
Differentials: Smooth Mapping between Lie Groups
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Subsection
 | 
						|
Motivation and Definition
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Standard
 | 
						|
The above shows how to compute the derivative of a function 
 | 
						|
\begin_inset Formula $f:G\rightarrow\Reals m$
 | 
						|
\end_inset
 | 
						|
 | 
						|
.
 | 
						|
 However, what if the argument to 
 | 
						|
\begin_inset Formula $f$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 is itself the result of a mapping between Lie groups? In other words, 
 | 
						|
\begin_inset Formula $f=g\circ\varphi$
 | 
						|
\end_inset
 | 
						|
 | 
						|
, with 
 | 
						|
\begin_inset Formula $g:G\rightarrow\Reals m$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 and where 
 | 
						|
\begin_inset Formula $\varphi:H\rightarrow G$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 is a smooth mapping from the 
 | 
						|
\begin_inset Formula $n$
 | 
						|
\end_inset
 | 
						|
 | 
						|
-dimensional Lie group 
 | 
						|
\begin_inset Formula $H$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 to the 
 | 
						|
\begin_inset Formula $p$
 | 
						|
\end_inset
 | 
						|
 | 
						|
-dimensional Lie group 
 | 
						|
\begin_inset Formula $G$
 | 
						|
\end_inset
 | 
						|
 | 
						|
.
 | 
						|
 In this case, one would expect that we can arrive at 
 | 
						|
\begin_inset Formula $Df_{a}$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 by composing linear maps, as follows:
 | 
						|
\begin_inset Formula 
 | 
						|
\[
 | 
						|
f'(a)=(g\circ\varphi)'(a)=G_{\varphi(a)}\varphi'(a)
 | 
						|
\]
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
where 
 | 
						|
\begin_inset Formula $\varphi'(a)$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 is an 
 | 
						|
\begin_inset Formula $n\times p$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 matrix that is the best linear approximation to the map 
 | 
						|
\family roman
 | 
						|
\series medium
 | 
						|
\shape up
 | 
						|
\size normal
 | 
						|
\emph off
 | 
						|
\bar no
 | 
						|
\strikeout off
 | 
						|
\uuline off
 | 
						|
\uwave off
 | 
						|
\noun off
 | 
						|
\color none
 | 
						|
 | 
						|
\begin_inset Formula $\varphi:H\rightarrow G$
 | 
						|
\end_inset
 | 
						|
 | 
						|
.
 | 
						|
 The corresponding linear map 
 | 
						|
\begin_inset Formula $D\varphi_{a}$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 is called the 
 | 
						|
\family default
 | 
						|
\series bold
 | 
						|
\shape default
 | 
						|
\size default
 | 
						|
\emph default
 | 
						|
\bar default
 | 
						|
\strikeout default
 | 
						|
\uuline default
 | 
						|
\uwave default
 | 
						|
\noun default
 | 
						|
\color inherit
 | 
						|
differential
 | 
						|
\family roman
 | 
						|
\series medium
 | 
						|
\shape up
 | 
						|
\size normal
 | 
						|
\emph off
 | 
						|
\bar no
 | 
						|
\strikeout off
 | 
						|
\uuline off
 | 
						|
\uwave off
 | 
						|
\noun off
 | 
						|
\color none
 | 
						|
 
 | 
						|
\family default
 | 
						|
\series default
 | 
						|
\shape default
 | 
						|
\size default
 | 
						|
\emph default
 | 
						|
\bar default
 | 
						|
\strikeout default
 | 
						|
\uuline default
 | 
						|
\uwave default
 | 
						|
\noun default
 | 
						|
\color inherit
 | 
						|
or 
 | 
						|
\series bold
 | 
						|
pushforward
 | 
						|
\family roman
 | 
						|
\series medium
 | 
						|
\shape up
 | 
						|
\size normal
 | 
						|
\emph off
 | 
						|
\bar no
 | 
						|
\strikeout off
 | 
						|
\uuline off
 | 
						|
\uwave off
 | 
						|
\noun off
 | 
						|
\color none
 | 
						|
 of 
 | 
						|
\begin_inset Formula $ $
 | 
						|
\end_inset
 | 
						|
 | 
						|
the mapping 
 | 
						|
\begin_inset Formula $\varphi$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 at 
 | 
						|
\begin_inset Formula $a$
 | 
						|
\end_inset
 | 
						|
 | 
						|
.
 | 
						|
 
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Standard
 | 
						|
 | 
						|
\family roman
 | 
						|
\series medium
 | 
						|
\shape up
 | 
						|
\size normal
 | 
						|
\emph off
 | 
						|
\bar no
 | 
						|
\strikeout off
 | 
						|
\uuline off
 | 
						|
\uwave off
 | 
						|
\noun off
 | 
						|
\color none
 | 
						|
Because a rigorous definition will lead us too far astray, here we only
 | 
						|
 informally define the pushforward of 
 | 
						|
\begin_inset Formula $\varphi$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 at 
 | 
						|
\begin_inset Formula $a$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 as the linear map 
 | 
						|
\begin_inset Formula $D\varphi_{a}:\Multi np$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 such that 
 | 
						|
\begin_inset Formula $D\varphi_{a}\left(\xi\right)\define\varphi'(a)\xi$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 and
 | 
						|
\family default
 | 
						|
\series default
 | 
						|
\shape default
 | 
						|
\size default
 | 
						|
\emph default
 | 
						|
\bar default
 | 
						|
\strikeout default
 | 
						|
\uuline default
 | 
						|
\uwave default
 | 
						|
\noun default
 | 
						|
\color inherit
 | 
						|
 | 
						|
\begin_inset Formula 
 | 
						|
\begin{equation}
 | 
						|
\varphi\left(ae^{\xihat}\right)\approx\varphi\left(a\right)\exp\left(\widehat{\varphi'(a)\xi}\right)\label{eq:pushforward}
 | 
						|
\end{equation}
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
with equality for 
 | 
						|
\begin_inset Formula $\xi\rightarrow0$
 | 
						|
\end_inset
 | 
						|
 | 
						|
.
 | 
						|
 We call 
 | 
						|
\begin_inset Formula $\varphi'(a)$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 the 
 | 
						|
\series bold
 | 
						|
Jacobian matrix
 | 
						|
\series default
 | 
						|
 of the map 
 | 
						|
\begin_inset Formula $\varphi$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 at 
 | 
						|
\begin_inset Formula $a$
 | 
						|
\end_inset
 | 
						|
 | 
						|
.
 | 
						|
 Below we show that even with this informal definition we can deduce the
 | 
						|
 pushforward in a number of useful cases.
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Subsection
 | 
						|
Left Multiplication with a Constant
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Theorem
 | 
						|
Suppose 
 | 
						|
\begin_inset Formula $G$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 is an 
 | 
						|
\begin_inset Formula $n$
 | 
						|
\end_inset
 | 
						|
 | 
						|
-dimensional Lie group, and 
 | 
						|
\begin_inset Formula $\varphi:G\rightarrow G$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 is defined as 
 | 
						|
\begin_inset Formula $\varphi(g)=hg$
 | 
						|
\end_inset
 | 
						|
 | 
						|
, with 
 | 
						|
\begin_inset Formula $h\in G$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 a constant.
 | 
						|
 Then 
 | 
						|
\begin_inset Formula $D\varphi_{a}$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 is the identity mapping and 
 | 
						|
\begin_inset Formula 
 | 
						|
\[
 | 
						|
\varphi'(a)=I_{n}
 | 
						|
\]
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Proof
 | 
						|
Defining 
 | 
						|
\begin_inset Formula $y=D\varphi_{a}x$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 as in 
 | 
						|
\begin_inset CommandInset ref
 | 
						|
LatexCommand eqref
 | 
						|
reference "eq:pushforward"
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
, we have
 | 
						|
\begin_inset Formula 
 | 
						|
\begin{eqnarray*}
 | 
						|
\varphi(a)e^{\yhat} & = & \varphi(ae^{\xhat})\\
 | 
						|
hae^{\yhat} & = & hae^{\xhat}\\
 | 
						|
y & = & x
 | 
						|
\end{eqnarray*}
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Subsection
 | 
						|
Pushforward of the Inverse Mapping
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Standard
 | 
						|
A well known property of Lie groups is the the fact that applying an incremental
 | 
						|
 change 
 | 
						|
\begin_inset Formula $\xihat$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 in a different frame 
 | 
						|
\begin_inset Formula $g$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 can be applied in a single step by applying the change 
 | 
						|
\begin_inset Formula $Ad_{g}\xihat$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 in the original frame, 
 | 
						|
\begin_inset Formula 
 | 
						|
\begin{equation}
 | 
						|
ge^{\xihat}g^{-1}=\exp\left(Ad_{g}\xihat\right)\label{eq:Adjoint2}
 | 
						|
\end{equation}
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
where 
 | 
						|
\begin_inset Formula $Ad_{g}:\mathfrak{g}\rightarrow\mathfrak{g}$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 is the 
 | 
						|
\series bold
 | 
						|
adjoint representation
 | 
						|
\series default
 | 
						|
.
 | 
						|
 This comes in handy in the following:
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Theorem
 | 
						|
Suppose that 
 | 
						|
\begin_inset Formula $\varphi:G\rightarrow G$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 is defined as the mapping from an element 
 | 
						|
\begin_inset Formula $g$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 to its 
 | 
						|
\series bold
 | 
						|
inverse
 | 
						|
\series default
 | 
						|
 
 | 
						|
\begin_inset Formula $g^{-1}$
 | 
						|
\end_inset
 | 
						|
 | 
						|
, i.e., 
 | 
						|
\begin_inset Formula $\varphi(g)=g^{-1}$
 | 
						|
\end_inset
 | 
						|
 | 
						|
, then the pushforward 
 | 
						|
\begin_inset Formula $D\varphi_{a}$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 satisfies
 | 
						|
\begin_inset Formula 
 | 
						|
\begin{align}
 | 
						|
\left(D\varphi_{a}x\right)\hat{} & =-Ad_{a}\xhat\label{eq:Dinverse}
 | 
						|
\end{align}
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Standard
 | 
						|
\begin_inset ERT
 | 
						|
status open
 | 
						|
 | 
						|
\begin_layout Plain Layout
 | 
						|
 | 
						|
 | 
						|
\backslash
 | 
						|
noindent
 | 
						|
\end_layout
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
 In other words, and this is intuitive in hindsight, approximating the inverse
 | 
						|
 is accomplished by negation of 
 | 
						|
\begin_inset Formula $\xihat$
 | 
						|
\end_inset
 | 
						|
 | 
						|
, along with an adjoint to make sure it is applied in the right frame.
 | 
						|
 
 | 
						|
\begin_inset ERT
 | 
						|
status open
 | 
						|
 | 
						|
\begin_layout Plain Layout
 | 
						|
 | 
						|
 | 
						|
\backslash
 | 
						|
noindent
 | 
						|
\end_layout
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
 Note, however, that 
 | 
						|
\begin_inset CommandInset ref
 | 
						|
LatexCommand eqref
 | 
						|
reference "eq:Dinverse"
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
 does not immediately yield a useful expression for the Jacobian matrix
 | 
						|
 
 | 
						|
\begin_inset Formula $\varphi'(a)$
 | 
						|
\end_inset
 | 
						|
 | 
						|
, but in many important cases this will turn out to be easy.
 | 
						|
 
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Proof
 | 
						|
Defining 
 | 
						|
\begin_inset Formula $y=D\varphi_{a}x$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 as in 
 | 
						|
\begin_inset CommandInset ref
 | 
						|
LatexCommand eqref
 | 
						|
reference "eq:pushforward"
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
, we have
 | 
						|
\begin_inset Formula 
 | 
						|
\begin{eqnarray*}
 | 
						|
\varphi(a)e^{\yhat} & = & \varphi(ae^{\xhat})\\
 | 
						|
a^{-1}e^{\yhat} & = & \left(ae^{\xhat}\right)^{-1}\\
 | 
						|
e^{\yhat} & = & -ae^{\xhat}a^{-1}\\
 | 
						|
\yhat & = & -\Ad a\xhat
 | 
						|
\end{eqnarray*}
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Example
 | 
						|
For 3D rotations 
 | 
						|
\begin_inset Formula $R\in\SOthree$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 we have
 | 
						|
\begin_inset Formula 
 | 
						|
\[
 | 
						|
Ad_{g}(\hat{\omega})=R\hat{\omega}R^{T}=\Skew{R\omega}
 | 
						|
\]
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
and hence the pushforward for the inverse mapping 
 | 
						|
\begin_inset Formula $\varphi(R)=R^{T}$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 has the matrix 
 | 
						|
\begin_inset Formula $\varphi'(R)=-R$
 | 
						|
\end_inset
 | 
						|
 | 
						|
.
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Subsection
 | 
						|
Right Multiplication with a Constant
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Theorem
 | 
						|
Suppose 
 | 
						|
\begin_inset Formula $\varphi:G\rightarrow G$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 is defined as 
 | 
						|
\begin_inset Formula $\varphi(g)=gh$
 | 
						|
\end_inset
 | 
						|
 | 
						|
, with 
 | 
						|
\begin_inset Formula $h\in G$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 a constant.
 | 
						|
 Then 
 | 
						|
\begin_inset Formula $D\varphi_{a}$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 satisfies
 | 
						|
\begin_inset Formula 
 | 
						|
\[
 | 
						|
\left(D\varphi_{a}x\right)\hat{}=\Ad{h^{-1}}\xhat
 | 
						|
\]
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Proof
 | 
						|
Defining 
 | 
						|
\begin_inset Formula $y=D\varphi_{a}x$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 as in 
 | 
						|
\begin_inset CommandInset ref
 | 
						|
LatexCommand eqref
 | 
						|
reference "eq:pushforward"
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
, we have
 | 
						|
\begin_inset Formula 
 | 
						|
\begin{align*}
 | 
						|
\varphi(a)e^{\yhat} & =\varphi(ae^{\xhat})\\
 | 
						|
ahe & =ae^{\xhat}h\\
 | 
						|
e^{\yhat} & =h^{-1}e^{\xhat}h=\exp\left(\Ad{h^{-1}}\xhat\right)\\
 | 
						|
\yhat & =\Ad{h^{-1}}\xhat
 | 
						|
\end{align*}
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Example
 | 
						|
In the case of 3D rotations, right multiplication with a constant rotation
 | 
						|
 
 | 
						|
\begin_inset Formula $R$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 is done through the mapping 
 | 
						|
\begin_inset Formula $\varphi(A)=AR$
 | 
						|
\end_inset
 | 
						|
 | 
						|
, and satisfies
 | 
						|
\begin_inset Formula 
 | 
						|
\[
 | 
						|
\Skew{D\varphi_{A}x}=\Ad{R^{T}}\Skew x
 | 
						|
\]
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
For 3D rotations 
 | 
						|
\begin_inset Formula $R\in\SOthree$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 we have
 | 
						|
\begin_inset Formula 
 | 
						|
\[
 | 
						|
Ad_{R^{T}}(\hat{\omega})=R^{T}\hat{\omega}R=\Skew{R^{T}\omega}
 | 
						|
\]
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
and hence the Jacobian matrix of 
 | 
						|
\begin_inset Formula $\varphi$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 at 
 | 
						|
\begin_inset Formula $A$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 is 
 | 
						|
\begin_inset Formula $\varphi'(A)=R^{T}$
 | 
						|
\end_inset
 | 
						|
 | 
						|
.
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Subsection
 | 
						|
Pushforward of Compose
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Theorem
 | 
						|
If we define the mapping 
 | 
						|
\begin_inset Formula $\varphi:G\times G\rightarrow G$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 as the product of two group elements 
 | 
						|
\begin_inset Formula $g,h\in G$
 | 
						|
\end_inset
 | 
						|
 | 
						|
, i.e., 
 | 
						|
\begin_inset Formula $\varphi(g,h)=gh$
 | 
						|
\end_inset
 | 
						|
 | 
						|
, then the pushforward will satisfy
 | 
						|
\begin_inset Formula 
 | 
						|
\[
 | 
						|
D\varphi_{(a,b)}(x,y)=D_{1}\varphi_{(a,b)}x+D_{2}\varphi_{(a,b)}y
 | 
						|
\]
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
with
 | 
						|
\begin_inset Formula 
 | 
						|
\[
 | 
						|
\left(D_{1}\varphi_{(a,b)}x\right)\hat{}=\Ad{b^{-1}}\xhat\mbox{\;\ and\;}D_{2}\varphi_{(a,b)}y=y
 | 
						|
\]
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Proof
 | 
						|
Looking at the first argument, the proof is very similar to right multiplication
 | 
						|
 with a constant 
 | 
						|
\begin_inset Formula $b$
 | 
						|
\end_inset
 | 
						|
 | 
						|
.
 | 
						|
 Indeed, defining 
 | 
						|
\begin_inset Formula $y=D\varphi_{a}x$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 as in 
 | 
						|
\begin_inset CommandInset ref
 | 
						|
LatexCommand eqref
 | 
						|
reference "eq:pushforward"
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
, we have
 | 
						|
\begin_inset Formula 
 | 
						|
\begin{align}
 | 
						|
\varphi(a,b)e^{\yhat} & =\varphi(ae^{\xhat},b)\nonumber \\
 | 
						|
abe^{\yhat} & =ae^{\xhat}b\nonumber \\
 | 
						|
e^{\yhat} & =b^{-1}e^{\xhat}b=\exp\left(\Ad{b^{-1}}\xhat\right)\nonumber \\
 | 
						|
\yhat & =\Ad{b^{-1}}\xhat\label{eq:Dcompose1}
 | 
						|
\end{align}
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
In other words, to apply an incremental change 
 | 
						|
\begin_inset Formula $\xhat$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 to 
 | 
						|
\begin_inset Formula $a$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 we first need to undo 
 | 
						|
\begin_inset Formula $b$
 | 
						|
\end_inset
 | 
						|
 | 
						|
, then apply 
 | 
						|
\begin_inset Formula $\xhat$
 | 
						|
\end_inset
 | 
						|
 | 
						|
, and then apply 
 | 
						|
\begin_inset Formula $b$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 again.
 | 
						|
 Using 
 | 
						|
\begin_inset CommandInset ref
 | 
						|
LatexCommand eqref
 | 
						|
reference "eq:Adjoint2"
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
 this can be done in one step by simply applying 
 | 
						|
\begin_inset Formula $\Ad{b^{-1}}\xhat$
 | 
						|
\end_inset
 | 
						|
 | 
						|
.
 | 
						|
 
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Proof
 | 
						|
The second argument is quite a bit easier and simply yields the identity
 | 
						|
 mapping:
 | 
						|
\begin_inset Formula 
 | 
						|
\begin{align}
 | 
						|
\varphi(a,b)e^{\yhat} & =\varphi(a,be^{\xhat})\nonumber \\
 | 
						|
abe^{\yhat} & =abe^{\xhat}\nonumber \\
 | 
						|
y & =x\label{eq:Dcompose2}
 | 
						|
\end{align}
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Standard
 | 
						|
\begin_inset Note Note
 | 
						|
status open
 | 
						|
 | 
						|
\begin_layout Plain Layout
 | 
						|
In summary, the Jacobian matrix of 
 | 
						|
\begin_inset Formula $\varphi(g,h)=gh$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 at 
 | 
						|
\begin_inset Formula $(a,b)\in G\times G$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 is given by
 | 
						|
\begin_inset Formula 
 | 
						|
\[
 | 
						|
\varphi'(a,b)=?
 | 
						|
\]
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
 | 
						|
\end_layout
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Example
 | 
						|
For 3D rotations 
 | 
						|
\begin_inset Formula $A,B\in\SOthree$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 we have 
 | 
						|
\begin_inset Formula $\varphi(A,B)=AB$
 | 
						|
\end_inset
 | 
						|
 | 
						|
, and 
 | 
						|
\begin_inset Formula $\Ad{B^{T}}\Skew{\omega}=\Skew{B^{T}\omega}$
 | 
						|
\end_inset
 | 
						|
 | 
						|
, hence the Jacobian matrix 
 | 
						|
\begin_inset Formula $\varphi'(A,B)$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 of composing two rotations is given by
 | 
						|
\begin_inset Formula 
 | 
						|
\[
 | 
						|
\varphi'(A,B)=\left[\begin{array}{cc}
 | 
						|
B^{T} & I_{3}\end{array}\right]
 | 
						|
\]
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Subsection
 | 
						|
\begin_inset CommandInset label
 | 
						|
LatexCommand label
 | 
						|
name "sub:Pushforward-of-Between"
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
Pushforward of Between
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Standard
 | 
						|
Finally, let us find the pushforward of 
 | 
						|
\series bold
 | 
						|
between
 | 
						|
\series default
 | 
						|
, defined as 
 | 
						|
\begin_inset Formula $\varphi(g,h)=g^{-1}h$
 | 
						|
\end_inset
 | 
						|
 | 
						|
.
 | 
						|
 For the first argument we reason as:
 | 
						|
\begin_inset Formula 
 | 
						|
\begin{align}
 | 
						|
\varphi(g,h)e^{\yhat} & =\varphi(ge^{\xhat},h)\nonumber \\
 | 
						|
g^{-1}he^{\yhat} & =\left(ge^{\xhat}\right)^{-1}h=-e^{\xhat}g^{-1}h\nonumber \\
 | 
						|
e^{\yhat} & =-\left(h^{-1}g\right)e^{\xhat}\left(h^{-1}g\right)^{-1}=-\exp\Ad{\left(h^{-1}g\right)}\xhat\nonumber \\
 | 
						|
\yhat & =-\Ad{\left(h^{-1}g\right)}\xhat=-\Ad{\varphi\left(h,g\right)}\xhat\label{eq:Dbetween1}
 | 
						|
\end{align}
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
The second argument yields the identity mapping.
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Example
 | 
						|
For 3D rotations 
 | 
						|
\begin_inset Formula $A,B\in\SOthree$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 we have 
 | 
						|
\begin_inset Formula $\varphi(A,B)=A^{T}B$
 | 
						|
\end_inset
 | 
						|
 | 
						|
, and 
 | 
						|
\begin_inset Formula $\Ad{B^{T}A}\Skew{-\omega}=\Skew{-B^{T}A\omega}$
 | 
						|
\end_inset
 | 
						|
 | 
						|
, hence the Jacobian matrix 
 | 
						|
\begin_inset Formula $\varphi'(A,B)$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 of between is given by
 | 
						|
\begin_inset Formula 
 | 
						|
\[
 | 
						|
\varphi'(A,B)=\left[\begin{array}{cc}
 | 
						|
\left(-B^{T}A\right) & I_{3}\end{array}\right]
 | 
						|
\]
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Subsection
 | 
						|
Numerical PushForward
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Standard
 | 
						|
Let's examine
 | 
						|
\begin_inset Formula 
 | 
						|
\[
 | 
						|
f\left(g\right)e^{\yhat}=f\left(ge^{\xhat}\right)
 | 
						|
\]
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
and multiply with 
 | 
						|
\begin_inset Formula $f(g)^{-1}$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 on both sides:
 | 
						|
\begin_inset Formula 
 | 
						|
\[
 | 
						|
e^{\yhat}=f\left(g\right)^{-1}f\left(ge^{\xhat}\right)
 | 
						|
\]
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
We then take the log (which in our case returns 
 | 
						|
\begin_inset Formula $y$
 | 
						|
\end_inset
 | 
						|
 | 
						|
, not 
 | 
						|
\begin_inset Formula $\yhat$
 | 
						|
\end_inset
 | 
						|
 | 
						|
):
 | 
						|
\begin_inset Formula 
 | 
						|
\[
 | 
						|
y(x)=\log\left[f\left(g\right)^{-1}f\left(ge^{\xhat}\right)\right]
 | 
						|
\]
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
Let us look at 
 | 
						|
\begin_inset Formula $x=0$
 | 
						|
\end_inset
 | 
						|
 | 
						|
, and perturb in direction 
 | 
						|
\begin_inset Formula $i$
 | 
						|
\end_inset
 | 
						|
 | 
						|
, 
 | 
						|
\begin_inset Formula $e_{i}=[0,0,1,0,0]$
 | 
						|
\end_inset
 | 
						|
 | 
						|
.
 | 
						|
 Then take derivative, 
 | 
						|
\begin_inset Formula 
 | 
						|
\[
 | 
						|
\deriv{y(d)}d\define\lim_{d\rightarrow0}\frac{y(d)-y(0)}{d}=\lim_{d\rightarrow0}\frac{1}{d}\log\left[f\left(g\right)^{-1}f\left(ge^{\widehat{de_{i}}}\right)\right]
 | 
						|
\]
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
which is the basis for a numerical derivative scheme.
 | 
						|
\begin_inset Note Note
 | 
						|
status collapsed
 | 
						|
 | 
						|
\begin_layout Plain Layout
 | 
						|
Not understood yet: Let us also look at a chain rule.
 | 
						|
 If we know the behavior at the origin 
 | 
						|
\begin_inset Formula $I$
 | 
						|
\end_inset
 | 
						|
 | 
						|
, we can extrapolate
 | 
						|
\begin_inset Formula 
 | 
						|
\[
 | 
						|
f(ge^{\xhat})=f(ge^{\xhat}g^{-1}g)=f(e^{\Ad g\xhat}g)
 | 
						|
\]
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
 | 
						|
\end_layout
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Subsection
 | 
						|
Derivative of the Exponential and Logarithm Map
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Theorem
 | 
						|
\begin_inset CommandInset label
 | 
						|
LatexCommand label
 | 
						|
name "D-exp"
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
The derivative of the function 
 | 
						|
\begin_inset Formula $f:\Reals n\rightarrow G$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 that applies the wedge operator followed by the exponential map, i.e., 
 | 
						|
\begin_inset Formula $f(\xi)=\exp\xihat$
 | 
						|
\end_inset
 | 
						|
 | 
						|
, is the identity map for 
 | 
						|
\begin_inset Formula $\xi=0$
 | 
						|
\end_inset
 | 
						|
 | 
						|
.
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Proof
 | 
						|
For 
 | 
						|
\begin_inset Formula $\xi=0$
 | 
						|
\end_inset
 | 
						|
 | 
						|
, we have
 | 
						|
\begin_inset Formula 
 | 
						|
\begin{eqnarray*}
 | 
						|
f(\xi)e^{\yhat} & = & f(\xi+x)\\
 | 
						|
f(0)e^{\yhat} & = & f(0+x)\\
 | 
						|
e^{\yhat} & = & e^{\xhat}
 | 
						|
\end{eqnarray*}
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Corollary
 | 
						|
The derivative of the inverse 
 | 
						|
\begin_inset Formula $f^{-1}$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 is the identity as well, i.e., for 
 | 
						|
\begin_inset Formula $T=e$
 | 
						|
\end_inset
 | 
						|
 | 
						|
, the identity element in 
 | 
						|
\begin_inset Formula $G$
 | 
						|
\end_inset
 | 
						|
 | 
						|
.
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Standard
 | 
						|
For 
 | 
						|
\begin_inset Formula $\xi\neq0$
 | 
						|
\end_inset
 | 
						|
 | 
						|
, things are not simple, see .
 | 
						|
 
 | 
						|
\begin_inset Flex URL
 | 
						|
status collapsed
 | 
						|
 | 
						|
\begin_layout Plain Layout
 | 
						|
 | 
						|
http://deltaepsilons.wordpress.com/2009/11/06/helgasons-formula-for-the-differenti
 | 
						|
al-of-the-exponential/
 | 
						|
\end_layout
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
.
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Standard
 | 
						|
\begin_inset Newpage pagebreak
 | 
						|
\end_inset
 | 
						|
 | 
						|
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Section
 | 
						|
General Manifolds
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Subsection
 | 
						|
Retractions
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Standard
 | 
						|
\begin_inset FormulaMacro
 | 
						|
\newcommand{\retract}{\mathcal{R}}
 | 
						|
{\mathcal{R}}
 | 
						|
\end_inset
 | 
						|
 | 
						|
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Standard
 | 
						|
General manifolds that are not Lie groups do not have an exponential map,
 | 
						|
 but can still be handled by defining a 
 | 
						|
\series bold
 | 
						|
retraction
 | 
						|
\series default
 | 
						|
 
 | 
						|
\begin_inset Formula $\retract:\Man\times\Reals n\rightarrow\Man$
 | 
						|
\end_inset
 | 
						|
 | 
						|
, such that
 | 
						|
\begin_inset Formula 
 | 
						|
\[
 | 
						|
a\oplus\xi\define\retract_{a}\left(\xi\right)
 | 
						|
\]
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
A retraction 
 | 
						|
\begin_inset CommandInset citation
 | 
						|
LatexCommand cite
 | 
						|
key "Absil07book"
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
 is required to be tangent to geodesics on the manifold 
 | 
						|
\begin_inset Formula $\Man$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 at 
 | 
						|
\begin_inset Formula $a$
 | 
						|
\end_inset
 | 
						|
 | 
						|
.
 | 
						|
 We can define many retractions for a manifold 
 | 
						|
\begin_inset Formula $\Man$
 | 
						|
\end_inset
 | 
						|
 | 
						|
, even for those with more structure.
 | 
						|
 For the vector space 
 | 
						|
\begin_inset Formula $\Reals n$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 the retraction is just vector addition, and for Lie groups the obvious
 | 
						|
 retraction is simply the exponential map, i.e., 
 | 
						|
\begin_inset Formula $\retract_{a}(\xi)=a\cdot\exp\xihat$
 | 
						|
\end_inset
 | 
						|
 | 
						|
.
 | 
						|
 However, one can choose other, possibly computationally attractive retractions,
 | 
						|
 as long as around a they agree with the geodesic induced by the exponential
 | 
						|
 map, i.e.,
 | 
						|
\begin_inset Formula 
 | 
						|
\[
 | 
						|
\lim_{\xi\rightarrow0}\frac{\left|a\cdot\exp\xihat-\retract_{a}\left(\xi\right)\right|}{\left|\xi\right|}=0
 | 
						|
\]
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Example
 | 
						|
For 
 | 
						|
\begin_inset Formula $\SEthree$
 | 
						|
\end_inset
 | 
						|
 | 
						|
, instead of using the true exponential map it is computationally more efficient
 | 
						|
 to define the retraction, which uses a first order approximation of the
 | 
						|
 translation update
 | 
						|
\begin_inset Formula 
 | 
						|
\[
 | 
						|
\retract_{T}\left(\left[\begin{array}{c}
 | 
						|
\omega\\
 | 
						|
v
 | 
						|
\end{array}\right]\right)=\left[\begin{array}{cc}
 | 
						|
R & t\\
 | 
						|
0 & 1
 | 
						|
\end{array}\right]\left[\begin{array}{cc}
 | 
						|
e^{\Skew{\omega}} & v\\
 | 
						|
0 & 1
 | 
						|
\end{array}\right]=\left[\begin{array}{cc}
 | 
						|
Re^{\Skew{\omega}} & t+Rv\\
 | 
						|
0 & 1
 | 
						|
\end{array}\right]
 | 
						|
\]
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Subsection
 | 
						|
Derivatives
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Standard
 | 
						|
Equipped with a retraction, then, we can generalize the notion of a derivative
 | 
						|
 for functions 
 | 
						|
\begin_inset Formula $f$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 from general a manifold 
 | 
						|
\begin_inset Formula $\Man$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 to 
 | 
						|
\begin_inset Formula $\Reals m$
 | 
						|
\end_inset
 | 
						|
 | 
						|
:
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Definition
 | 
						|
We define a function 
 | 
						|
\begin_inset Formula $f:\Man\rightarrow\Reals m$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 to be 
 | 
						|
\series bold
 | 
						|
differentiable
 | 
						|
\series default
 | 
						|
 at 
 | 
						|
\begin_inset Formula $a\in\Man$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 if there exists a matrix 
 | 
						|
\begin_inset Formula $f'(a)$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 such that
 | 
						|
\begin_inset Formula 
 | 
						|
\[
 | 
						|
\lim_{\xi\rightarrow0}\frac{\left|f(a)+f'(a)\xi-f\left(\retract_{a}(\xi)\right)\right|}{\left|\xi\right|}=0
 | 
						|
\]
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
with 
 | 
						|
\begin_inset Formula $\xi\in\Reals n$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 for an 
 | 
						|
\begin_inset Formula $n$
 | 
						|
\end_inset
 | 
						|
 | 
						|
-dimensional manifold, and 
 | 
						|
\begin_inset Formula $\retract_{a}:\Reals n\rightarrow\Man$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 a retraction 
 | 
						|
\begin_inset Formula $\retract$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 at 
 | 
						|
\begin_inset Formula $a$
 | 
						|
\end_inset
 | 
						|
 | 
						|
.
 | 
						|
 If 
 | 
						|
\begin_inset Formula $f$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 is differentiable, then 
 | 
						|
\begin_inset Formula $f'(a)$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 is called the 
 | 
						|
\series bold
 | 
						|
Jacobian matrix
 | 
						|
\series default
 | 
						|
 of 
 | 
						|
\begin_inset Formula $f$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 at 
 | 
						|
\begin_inset Formula $a$
 | 
						|
\end_inset
 | 
						|
 | 
						|
, and the linear transformation 
 | 
						|
\begin_inset Formula $Df_{a}:\xi\mapsto f'(a)\xi$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 is called the 
 | 
						|
\series bold
 | 
						|
derivative
 | 
						|
\series default
 | 
						|
 of 
 | 
						|
\begin_inset Formula $f$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 at 
 | 
						|
\begin_inset Formula $a$
 | 
						|
\end_inset
 | 
						|
 | 
						|
.
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Definition
 | 
						|
For manifolds that are also Lie groups, the derivative of any function 
 | 
						|
\begin_inset Formula $f:G\rightarrow\Reals m$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 will agree no matter what retraction 
 | 
						|
\begin_inset Formula $\retract$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 is used.
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Standard
 | 
						|
\begin_inset Newpage pagebreak
 | 
						|
\end_inset
 | 
						|
 | 
						|
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Part
 | 
						|
Practice
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Standard
 | 
						|
Below we apply the results derived in the theory part to the geometric objects
 | 
						|
 we use in GTSAM.
 | 
						|
 Above we preferred the modern notation 
 | 
						|
\begin_inset Formula $D_{1}f$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 for the partial derivative.
 | 
						|
 Below (because this was written earlier) we use the more classical notation
 | 
						|
 
 | 
						|
\begin_inset Formula 
 | 
						|
\[
 | 
						|
\deriv{f(x,y)}x
 | 
						|
\]
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
In addition, for Lie groups we will abuse the notation and take
 | 
						|
\begin_inset Formula 
 | 
						|
\[
 | 
						|
\at{\deriv{\varphi(g)}{\xi}}a
 | 
						|
\]
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
to be the Jacobian matrix 
 | 
						|
\begin_inset Formula $\varphi'($
 | 
						|
\end_inset
 | 
						|
 | 
						|
a) of the mapping 
 | 
						|
\begin_inset Formula $\varphi$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 at 
 | 
						|
\begin_inset Formula $a\in G$
 | 
						|
\end_inset
 | 
						|
 | 
						|
, associated with the pushforward 
 | 
						|
\begin_inset Formula $D\varphi_{a}$
 | 
						|
\end_inset
 | 
						|
 | 
						|
.
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Section
 | 
						|
SLAM Example
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Standard
 | 
						|
Let us examine a visual SLAM example.
 | 
						|
 We have 2D measurements 
 | 
						|
\begin_inset Formula $z_{ij}$
 | 
						|
\end_inset
 | 
						|
 | 
						|
, where each measurement is predicted by
 | 
						|
\begin_inset Formula 
 | 
						|
\[
 | 
						|
z_{ij}=h(T_{i},p_{j})=\pi(T_{i}^{-1}p_{j})
 | 
						|
\]
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
where 
 | 
						|
\begin_inset Formula $T_{i}$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 is the 3D pose of the 
 | 
						|
\begin_inset Formula $i^{th}$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 camera, 
 | 
						|
\begin_inset Formula $p_{j}$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 is the location of the 
 | 
						|
\begin_inset Formula $j^{th}$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 point, and 
 | 
						|
\begin_inset Formula $\pi:(x,y,z)\mapsto(x/z,y/z)$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 is the camera projection function from Example 
 | 
						|
\begin_inset CommandInset ref
 | 
						|
LatexCommand ref
 | 
						|
reference "ex:projection"
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
.
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Section
 | 
						|
BetweenFactor
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Standard
 | 
						|
 | 
						|
\series bold
 | 
						|
\emph on
 | 
						|
BetweenFactor
 | 
						|
\series default
 | 
						|
\emph default
 | 
						|
 is a factor in GTSAM that is used ubiquitously to process measurements
 | 
						|
 indicating the relative pose between two unknown poses 
 | 
						|
\begin_inset Formula $T_{1}$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 and 
 | 
						|
\begin_inset Formula $T_{2}$
 | 
						|
\end_inset
 | 
						|
 | 
						|
.
 | 
						|
 Let us assume the measured relative pose is 
 | 
						|
\begin_inset Formula $Z$
 | 
						|
\end_inset
 | 
						|
 | 
						|
, then the code that calculates the error in 
 | 
						|
\series bold
 | 
						|
\emph on
 | 
						|
BetweenFactor
 | 
						|
\series default
 | 
						|
\emph default
 | 
						|
 first calculates the predicted relative pose 
 | 
						|
\begin_inset Formula $T_{12}$
 | 
						|
\end_inset
 | 
						|
 | 
						|
, and then evaluates the error between the measured and predicted relative
 | 
						|
 pose:
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout LyX-Code
 | 
						|
T12 = between(T1, T2);
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout LyX-Code
 | 
						|
return localCoordinates(Z, T12);
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Standard
 | 
						|
where we recall that the function 
 | 
						|
\series bold
 | 
						|
\emph on
 | 
						|
between
 | 
						|
\series default
 | 
						|
\emph default
 | 
						|
 is given in group theoretic notation as 
 | 
						|
\begin_inset Formula 
 | 
						|
\[
 | 
						|
\varphi(g,h)=g^{-1}h
 | 
						|
\]
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
The function 
 | 
						|
\series bold
 | 
						|
\emph on
 | 
						|
localCoordinates
 | 
						|
\series default
 | 
						|
\emph default
 | 
						|
 itself also calls 
 | 
						|
\series bold
 | 
						|
\emph on
 | 
						|
between
 | 
						|
\series default
 | 
						|
\emph default
 | 
						|
, and converts to canonical coordinates: 
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout LyX-Code
 | 
						|
localCoordinates(Z,T12) = Logmap(between(Z, T12));
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Standard
 | 
						|
Hence, given two elements 
 | 
						|
\begin_inset Formula $T_{1}$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 and 
 | 
						|
\begin_inset Formula $T_{2}$
 | 
						|
\end_inset
 | 
						|
 | 
						|
, 
 | 
						|
\series bold
 | 
						|
\emph on
 | 
						|
BetweenFactor
 | 
						|
\series default
 | 
						|
\emph default
 | 
						|
 evaluates 
 | 
						|
\begin_inset Formula $g:G\times G\rightarrow\Reals n$
 | 
						|
\end_inset
 | 
						|
 | 
						|
,
 | 
						|
\begin_inset Formula 
 | 
						|
\[
 | 
						|
g(T_{1},T_{2};Z)=f^{-1}\left(\varphi(Z,\varphi(T_{1},T_{2})\right)=f^{-1}\left(Z^{-1}\left(T_{1}^{-1}T_{2}\right)\right)
 | 
						|
\]
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
where 
 | 
						|
\begin_inset Formula $f^{-1}$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 is the inverse of the map 
 | 
						|
\begin_inset Formula $f:\xi\mapsto\exp\xihat$
 | 
						|
\end_inset
 | 
						|
 | 
						|
.
 | 
						|
 If we assume that the measurement has only small error, then 
 | 
						|
\begin_inset Formula $Z\approx T_{1}^{-1}T_{2}$
 | 
						|
\end_inset
 | 
						|
 | 
						|
, and hence we have 
 | 
						|
\begin_inset Formula $Z^{-1}T_{1}^{-1}T_{2}\approx e$
 | 
						|
\end_inset
 | 
						|
 | 
						|
, and we can invoke Theorem 
 | 
						|
\begin_inset CommandInset ref
 | 
						|
LatexCommand ref
 | 
						|
reference "D-exp"
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
, which says that the derivative of the exponential map 
 | 
						|
\begin_inset Formula $f:\xi\mapsto\exp\xihat$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 is identity at 
 | 
						|
\begin_inset Formula $\xi=0$
 | 
						|
\end_inset
 | 
						|
 | 
						|
, as well as its inverse.
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Standard
 | 
						|
Finally, because the derivative of 
 | 
						|
\series bold
 | 
						|
\emph on
 | 
						|
between
 | 
						|
\series default
 | 
						|
\emph default
 | 
						|
 is identity in its second argument, the derivative of the 
 | 
						|
\series bold
 | 
						|
\emph on
 | 
						|
BetweenFactor
 | 
						|
\series default
 | 
						|
\emph default
 | 
						|
 error is identical to the derivative of pushforward of 
 | 
						|
\begin_inset Formula $\varphi(T_{1},T_{2})$
 | 
						|
\end_inset
 | 
						|
 | 
						|
, derived in Section 
 | 
						|
\begin_inset CommandInset ref
 | 
						|
LatexCommand ref
 | 
						|
reference "sub:Pushforward-of-Between"
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
.
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Section
 | 
						|
Point3
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Standard
 | 
						|
A cross product 
 | 
						|
\begin_inset Formula $a\times b$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 can be written as a matrix multiplication
 | 
						|
\begin_inset Formula 
 | 
						|
\[
 | 
						|
a\times b=\Skew ab
 | 
						|
\]
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
where 
 | 
						|
\begin_inset Formula $\Skew a$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 is a skew-symmetric matrix defined as
 | 
						|
\begin_inset Formula 
 | 
						|
\[
 | 
						|
\Skew{x,y,z}=\left[\begin{array}{ccc}
 | 
						|
0 & -z & y\\
 | 
						|
z & 0 & -x\\
 | 
						|
-y & x & 0
 | 
						|
\end{array}\right]
 | 
						|
\]
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
We also have
 | 
						|
\begin_inset Formula 
 | 
						|
\[
 | 
						|
a^{T}\Skew b=-(\Skew ba)^{T}=-(a\times b)^{T}
 | 
						|
\]
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
The derivative of a cross product 
 | 
						|
\begin_inset Formula 
 | 
						|
\begin{equation}
 | 
						|
\frac{\partial(a\times b)}{\partial a}=\Skew{-b}\label{eq:Dcross1}
 | 
						|
\end{equation}
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
 | 
						|
\begin_inset Formula 
 | 
						|
\begin{equation}
 | 
						|
\frac{\partial(a\times b)}{\partial b}=\Skew a\label{eq:Dcross2}
 | 
						|
\end{equation}
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Standard
 | 
						|
\begin_inset Newpage pagebreak
 | 
						|
\end_inset
 | 
						|
 | 
						|
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Section
 | 
						|
2D Rotations
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Subsection
 | 
						|
Rot2 in GTSAM
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Standard
 | 
						|
A rotation is stored as 
 | 
						|
\begin_inset Formula $(\cos\theta,\sin\theta)$
 | 
						|
\end_inset
 | 
						|
 | 
						|
.
 | 
						|
 An incremental rotation is applied using the trigonometric sum rule:
 | 
						|
\begin_inset Formula 
 | 
						|
\[
 | 
						|
\cos\theta'=\cos\theta\cos\delta-\sin\theta\sin\delta
 | 
						|
\]
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
 | 
						|
\begin_inset Formula 
 | 
						|
\[
 | 
						|
\sin\theta'=\sin\theta\cos\delta+\cos\theta\sin\delta
 | 
						|
\]
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
where 
 | 
						|
\begin_inset Formula $\delta$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 is an incremental rotation angle.
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Subsection
 | 
						|
Derivatives of Actions
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Standard
 | 
						|
In the case of 
 | 
						|
\begin_inset Formula $\SOtwo$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 the vector space is 
 | 
						|
\begin_inset Formula $\Rtwo$
 | 
						|
\end_inset
 | 
						|
 | 
						|
, and the group action 
 | 
						|
\begin_inset Formula $f(R,p)$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 corresponds to rotating the 2D point 
 | 
						|
\begin_inset Formula $p$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 | 
						|
\begin_inset Formula 
 | 
						|
\[
 | 
						|
f(R,p)=Rp
 | 
						|
\]
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
According to Theorem 
 | 
						|
\begin_inset CommandInset ref
 | 
						|
LatexCommand ref
 | 
						|
reference "th:Action"
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
, the Jacobian matrix of 
 | 
						|
\begin_inset Formula $f$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 is given by
 | 
						|
\begin_inset Formula 
 | 
						|
\[
 | 
						|
f'(R,p)=\left[\begin{array}{cc}
 | 
						|
RH(p) & R\end{array}\right]
 | 
						|
\]
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
with 
 | 
						|
\begin_inset Formula $H:\Reals 2\rightarrow\Reals{2\times2}$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 a linear mapping that depends on 
 | 
						|
\begin_inset Formula $p$
 | 
						|
\end_inset
 | 
						|
 | 
						|
.
 | 
						|
 In the case of 
 | 
						|
\begin_inset Formula $\SOtwo$
 | 
						|
\end_inset
 | 
						|
 | 
						|
, we can find 
 | 
						|
\begin_inset Formula $H(p)$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 by equating (as in Equation 
 | 
						|
\begin_inset CommandInset ref
 | 
						|
LatexCommand ref
 | 
						|
reference "eq:Hp"
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
):
 | 
						|
\begin_inset Formula 
 | 
						|
\[
 | 
						|
\skew wp=\left[\begin{array}{cc}
 | 
						|
0 & -\omega\\
 | 
						|
\omega & 0
 | 
						|
\end{array}\right]\left[\begin{array}{c}
 | 
						|
x\\
 | 
						|
y
 | 
						|
\end{array}\right]=\left[\begin{array}{c}
 | 
						|
-y\\
 | 
						|
x
 | 
						|
\end{array}\right]\omega=H(p)\omega
 | 
						|
\]
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
Note that 
 | 
						|
\family roman
 | 
						|
\series medium
 | 
						|
\shape up
 | 
						|
\size normal
 | 
						|
\emph off
 | 
						|
\bar no
 | 
						|
\strikeout off
 | 
						|
\uuline off
 | 
						|
\uwave off
 | 
						|
\noun off
 | 
						|
\color none
 | 
						|
 | 
						|
\begin_inset Formula 
 | 
						|
\[
 | 
						|
H(p)=\left[\begin{array}{c}
 | 
						|
-y\\
 | 
						|
x
 | 
						|
\end{array}\right]=\left[\begin{array}{cc}
 | 
						|
0 & -1\\
 | 
						|
1 & 0
 | 
						|
\end{array}\right]\left[\begin{array}{c}
 | 
						|
x\\
 | 
						|
y
 | 
						|
\end{array}\right]=R_{\pi/2}p
 | 
						|
\]
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
and since 2D rotations commute, we also have, with 
 | 
						|
\begin_inset Formula $q=Rp$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 | 
						|
\family default
 | 
						|
\series default
 | 
						|
\shape default
 | 
						|
\size default
 | 
						|
\emph default
 | 
						|
\bar default
 | 
						|
\strikeout default
 | 
						|
\uuline default
 | 
						|
\uwave default
 | 
						|
\noun default
 | 
						|
\color inherit
 | 
						|
:
 | 
						|
\begin_inset Formula 
 | 
						|
\[
 | 
						|
f'(R,p)=\left[\begin{array}{cc}
 | 
						|
R\left(R_{\pi/2}p\right) & R\end{array}\right]=\left[\begin{array}{cc}
 | 
						|
R_{\pi/2}q & R\end{array}\right]
 | 
						|
\]
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Subsection
 | 
						|
Pushforwards of Mappings
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Standard
 | 
						|
Since 
 | 
						|
\begin_inset Formula $\Ad R\skew{\omega}=\skew{\omega}$
 | 
						|
\end_inset
 | 
						|
 | 
						|
, we have the derivative of 
 | 
						|
\series bold
 | 
						|
inverse
 | 
						|
\series default
 | 
						|
,
 | 
						|
\begin_inset Formula 
 | 
						|
\[
 | 
						|
\frac{\partial R^{T}}{\partial\omega}=-\Ad R=-1\mbox{ }
 | 
						|
\]
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
 | 
						|
\series bold
 | 
						|
compose,
 | 
						|
\series default
 | 
						|
 | 
						|
\begin_inset Formula 
 | 
						|
\[
 | 
						|
\frac{\partial\left(R_{1}R_{2}\right)}{\partial\omega_{1}}=\Ad{R_{2}^{T}}=1\mbox{ and }\frac{\partial\left(R_{1}R_{2}\right)}{\partial\omega_{2}}=1
 | 
						|
\]
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
and 
 | 
						|
\series bold
 | 
						|
between:
 | 
						|
\series default
 | 
						|
 | 
						|
\begin_inset Formula 
 | 
						|
\[
 | 
						|
\frac{\partial\left(R_{1}^{T}R_{2}\right)}{\partial\omega_{1}}=-\Ad{R_{2}^{T}R_{1}}=-1\mbox{ and }\frac{\partial\left(R_{1}^{T}R_{2}\right)}{\partial\omega_{2}}=1
 | 
						|
\]
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Standard
 | 
						|
\begin_inset Newpage pagebreak
 | 
						|
\end_inset
 | 
						|
 | 
						|
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Section
 | 
						|
2D Rigid Transformations
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Subsection
 | 
						|
The derivatives of Actions
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Standard
 | 
						|
The action of 
 | 
						|
\begin_inset Formula $\SEtwo$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 on 2D points is done by embedding the points in 
 | 
						|
\begin_inset Formula $\mathbb{R}^{3}$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 by using homogeneous coordinates
 | 
						|
\begin_inset Formula 
 | 
						|
\[
 | 
						|
f(T,p)=\hat{q}=\left[\begin{array}{c}
 | 
						|
q\\
 | 
						|
1
 | 
						|
\end{array}\right]=\left[\begin{array}{cc}
 | 
						|
R & t\\
 | 
						|
0 & 1
 | 
						|
\end{array}\right]\left[\begin{array}{c}
 | 
						|
p\\
 | 
						|
1
 | 
						|
\end{array}\right]=T\hat{p}
 | 
						|
\]
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
To find the derivative, we write the quantity 
 | 
						|
\begin_inset Formula $\xihat\hat{p}$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 as the product of the 
 | 
						|
\begin_inset Formula $3\times3$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 matrix 
 | 
						|
\begin_inset Formula $H(p)$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 with 
 | 
						|
\begin_inset Formula $\xi$
 | 
						|
\end_inset
 | 
						|
 | 
						|
: 
 | 
						|
\begin_inset Formula 
 | 
						|
\begin{equation}
 | 
						|
\xihat\hat{p}=\left[\begin{array}{cc}
 | 
						|
\skew{\omega} & v\\
 | 
						|
0 & 0
 | 
						|
\end{array}\right]\left[\begin{array}{c}
 | 
						|
p\\
 | 
						|
1
 | 
						|
\end{array}\right]=\left[\begin{array}{c}
 | 
						|
\skew{\omega}p+v\\
 | 
						|
0
 | 
						|
\end{array}\right]=\left[\begin{array}{cc}
 | 
						|
I_{2} & R_{\pi/2}p\\
 | 
						|
0 & 0
 | 
						|
\end{array}\right]\left[\begin{array}{c}
 | 
						|
v\\
 | 
						|
\omega
 | 
						|
\end{array}\right]=H(p)\xi\label{eq:HpSE2}
 | 
						|
\end{equation}
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
Hence, by Theorem 
 | 
						|
\begin_inset CommandInset ref
 | 
						|
LatexCommand ref
 | 
						|
reference "th:Action"
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
 we have
 | 
						|
\begin_inset Formula 
 | 
						|
\begin{equation}
 | 
						|
\deriv{\left(T\hat{p}\right)}{\xi}=TH(p)=\left[\begin{array}{cc}
 | 
						|
R & t\\
 | 
						|
0 & 1
 | 
						|
\end{array}\right]\left[\begin{array}{cc}
 | 
						|
I_{2} & R_{\pi/2}p\\
 | 
						|
0 & 0
 | 
						|
\end{array}\right]=\left[\begin{array}{cc}
 | 
						|
R & RR_{\pi/2}p\\
 | 
						|
0 & 0
 | 
						|
\end{array}\right]=\left[\begin{array}{cc}
 | 
						|
R & R_{\pi/2}q\\
 | 
						|
0 & 0
 | 
						|
\end{array}\right]\label{eq:SE2Action}
 | 
						|
\end{equation}
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
Note that, looking only at the top rows of 
 | 
						|
\begin_inset CommandInset ref
 | 
						|
LatexCommand eqref
 | 
						|
reference "eq:HpSE2"
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
 and 
 | 
						|
\begin_inset CommandInset ref
 | 
						|
LatexCommand eqref
 | 
						|
reference "eq:SE2Action"
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
, we can recognize the quantity 
 | 
						|
\begin_inset Formula $\skew{\omega}p+v=v+\omega\left(R_{\pi/2}p\right)$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 as the velocity of 
 | 
						|
\begin_inset Formula $p$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 in 
 | 
						|
\begin_inset Formula $\Rtwo$
 | 
						|
\end_inset
 | 
						|
 | 
						|
, and 
 | 
						|
\begin_inset Formula $\left[\begin{array}{cc}
 | 
						|
R & R_{\pi/2}q\end{array}\right]$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 is the derivative of the action on 
 | 
						|
\begin_inset Formula $\Rtwo$
 | 
						|
\end_inset
 | 
						|
 | 
						|
.
 | 
						|
 
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Standard
 | 
						|
The derivative of the inverse action 
 | 
						|
\begin_inset Formula $g(T,p)=T^{-1}\hat{p}$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 is given by Theorem 
 | 
						|
\begin_inset CommandInset ref
 | 
						|
LatexCommand ref
 | 
						|
reference "Th:InverseAction"
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
 specialized to 
 | 
						|
\begin_inset Formula $\SEtwo$
 | 
						|
\end_inset
 | 
						|
 | 
						|
:
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Standard
 | 
						|
\begin_inset Formula 
 | 
						|
\[
 | 
						|
\deriv{\left(T^{-1}\hat{p}\right)}{\xi}=-H(T^{-1}p)=\left[\begin{array}{cc}
 | 
						|
-I_{2} & -R_{\pi/2}\left(T^{-1}p\right)\\
 | 
						|
0 & 0
 | 
						|
\end{array}\right]
 | 
						|
\]
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Subsection
 | 
						|
Pushforwards of Mappings
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Standard
 | 
						|
We can just define all derivatives in terms of the adjoint map, which in
 | 
						|
 the case of 
 | 
						|
\begin_inset Formula $\SEtwo$
 | 
						|
\end_inset
 | 
						|
 | 
						|
, in twist coordinates, is the linear mapping
 | 
						|
\begin_inset Formula 
 | 
						|
\[
 | 
						|
\Ad T\xi=\left[\begin{array}{cc}
 | 
						|
R & -R_{\pi/2}t\\
 | 
						|
0 & 1
 | 
						|
\end{array}\right]\left[\begin{array}{c}
 | 
						|
v\\
 | 
						|
\omega
 | 
						|
\end{array}\right]
 | 
						|
\]
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
and we have 
 | 
						|
\begin_inset Formula 
 | 
						|
\begin{eqnarray*}
 | 
						|
\frac{\partial T^{^{-1}}}{\partial\xi} & = & -\Ad T
 | 
						|
\end{eqnarray*}
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
 | 
						|
\begin_inset Formula 
 | 
						|
\begin{eqnarray*}
 | 
						|
\frac{\partial\left(T_{1}T_{2}\right)}{\partial\xi_{1}} & = & \Ad{T_{2}^{^{-1}}}\mbox{ and }\frac{\partial\left(T_{1}T_{2}\right)}{\partial\xi_{2}}=I_{3}
 | 
						|
\end{eqnarray*}
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
 | 
						|
\begin_inset Formula 
 | 
						|
\begin{eqnarray*}
 | 
						|
\frac{\partial\left(T_{1}^{-1}T_{2}\right)}{\partial\xi_{1}} & = & -\Ad{T_{2}^{^{-1}}T_{1}}=-\Ad{between(T_{2},T_{1})}\mbox{ and }\frac{\partial\left(T_{1}^{-1}T_{2}\right)}{\partial\xi_{2}}=I_{3}
 | 
						|
\end{eqnarray*}
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Standard
 | 
						|
\begin_inset Newpage pagebreak
 | 
						|
\end_inset
 | 
						|
 | 
						|
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Section
 | 
						|
3D Rotations
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Subsection
 | 
						|
Derivatives of Actions
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Standard
 | 
						|
In the case of 
 | 
						|
\begin_inset Formula $\SOthree$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 the vector space is  
 | 
						|
\begin_inset Formula $\Rthree$
 | 
						|
\end_inset
 | 
						|
 | 
						|
, and the group action 
 | 
						|
\begin_inset Formula $f(R,p)$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 corresponds to rotating a point
 | 
						|
\begin_inset Formula 
 | 
						|
\[
 | 
						|
q=f(R,p)=Rp
 | 
						|
\]
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
To calculate 
 | 
						|
\begin_inset Formula $H(p)$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 for use in Theorem 
 | 
						|
\begin_inset CommandInset ref
 | 
						|
LatexCommand eqref
 | 
						|
reference "th:Action"
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
 we make use of 
 | 
						|
\begin_inset Formula 
 | 
						|
\[
 | 
						|
\Skew{\omega}p=\omega\times p=-p\times\omega=\Skew{-p}\omega
 | 
						|
\]
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
so 
 | 
						|
\begin_inset Formula $H(p)\define\Skew{-p}$
 | 
						|
\end_inset
 | 
						|
 | 
						|
.
 | 
						|
 Hence, the final derivative of an action in its first argument is
 | 
						|
\begin_inset Formula 
 | 
						|
\begin{equation}
 | 
						|
\deriv{\left(Rp\right)}{\omega}=RH(p)=-R\Skew p\label{eq:Rot3action}
 | 
						|
\end{equation}
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
Likewise, according to Theorem 
 | 
						|
\begin_inset CommandInset ref
 | 
						|
LatexCommand ref
 | 
						|
reference "Th:InverseAction"
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
, the derivative of the inverse action is given by
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Standard
 | 
						|
\begin_inset Formula 
 | 
						|
\[
 | 
						|
\deriv{\left(R^{T}p\right)}{\omega}=-H(R^{T}p)=\Skew{R^{T}p}
 | 
						|
\]
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Subsection
 | 
						|
\begin_inset CommandInset label
 | 
						|
LatexCommand label
 | 
						|
name "sub:3DAngularVelocities"
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
Instantaneous Velocity
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Standard
 | 
						|
For 3D rotations 
 | 
						|
\begin_inset Formula $R_{b}^{n}$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 from a body frame 
 | 
						|
\begin_inset Formula $b$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 to a navigation frame 
 | 
						|
\begin_inset Formula $n$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 we have the spatial angular velocity 
 | 
						|
\begin_inset Formula $\omega_{nb}^{n}$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 measured in the navigation frame,
 | 
						|
\begin_inset Formula 
 | 
						|
\[
 | 
						|
\Skew{\omega_{nb}^{n}}\define\dot{R}_{b}^{n}\left(R_{b}^{n}\right)^{T}=\dot{R}_{b}^{n}R_{n}^{b}
 | 
						|
\]
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
and the body angular velocity 
 | 
						|
\begin_inset Formula $\omega_{nb}^{b}$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 measured in the body frame:
 | 
						|
\begin_inset Formula 
 | 
						|
\[
 | 
						|
\Skew{\omega_{nb}^{b}}\define\left(R_{b}^{n}\right)^{T}\dot{R}_{b}^{n}=R_{n}^{b}\dot{R}_{b}^{n}
 | 
						|
\]
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
These quantities can be used to derive the velocity of a point 
 | 
						|
\begin_inset Formula $p$
 | 
						|
\end_inset
 | 
						|
 | 
						|
, and we choose between spatial or body angular velocity depending on the
 | 
						|
 frame in which we choose to represent 
 | 
						|
\begin_inset Formula $p$
 | 
						|
\end_inset
 | 
						|
 | 
						|
:
 | 
						|
\begin_inset Formula 
 | 
						|
\[
 | 
						|
v^{n}=\Skew{\omega_{nb}^{n}}p^{n}=\omega_{nb}^{n}\times p^{n}
 | 
						|
\]
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
 | 
						|
\begin_inset Formula 
 | 
						|
\[
 | 
						|
v^{b}=\Skew{\omega_{nb}^{b}}p^{b}=\omega_{nb}^{b}\times p^{b}
 | 
						|
\]
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
We can transform these skew-symmetric matrices from navigation to body frame
 | 
						|
 by conjugating, 
 | 
						|
\begin_inset Formula 
 | 
						|
\[
 | 
						|
\Skew{\omega_{nb}^{b}}=R_{n}^{b}\Skew{\omega_{nb}^{n}}R_{b}^{n}
 | 
						|
\]
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
but because the adjoint representation satisfies
 | 
						|
\begin_inset Formula 
 | 
						|
\[
 | 
						|
Ad_{R}\Skew{\omega}\define R\Skew{\omega}R^{T}=\Skew{R\omega}
 | 
						|
\]
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
we can even more easily transform between spatial and body angular velocities
 | 
						|
 as 3-vectors:
 | 
						|
\begin_inset Formula 
 | 
						|
\[
 | 
						|
\omega_{nb}^{b}=R_{n}^{b}\omega_{nb}^{n}
 | 
						|
\]
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Subsection
 | 
						|
Pushforwards of Mappings
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Standard
 | 
						|
For 
 | 
						|
\begin_inset Formula $\SOthree$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 we have 
 | 
						|
\begin_inset Formula $\Ad R\Skew{\omega}=\Skew{R\omega}$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 and, in terms of angular velocities: 
 | 
						|
\begin_inset Formula $\Ad R\omega=R\omega$
 | 
						|
\end_inset
 | 
						|
 | 
						|
.
 | 
						|
 Hence, the Jacobian matrix of the 
 | 
						|
\series bold
 | 
						|
inverse
 | 
						|
\series default
 | 
						|
 mapping is (see Equation 
 | 
						|
\begin_inset CommandInset ref
 | 
						|
LatexCommand ref
 | 
						|
reference "eq:Dinverse"
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
) 
 | 
						|
\begin_inset Formula 
 | 
						|
\[
 | 
						|
\frac{\partial R^{T}}{\partial\omega}=-\Ad R=-R
 | 
						|
\]
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
for 
 | 
						|
\series bold
 | 
						|
compose
 | 
						|
\series default
 | 
						|
 we have (Equations 
 | 
						|
\begin_inset CommandInset ref
 | 
						|
LatexCommand ref
 | 
						|
reference "eq:Dcompose1"
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
 and 
 | 
						|
\begin_inset CommandInset ref
 | 
						|
LatexCommand ref
 | 
						|
reference "eq:Dcompose2"
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
): 
 | 
						|
\begin_inset Formula 
 | 
						|
\[
 | 
						|
\frac{\partial\left(R_{1}R_{2}\right)}{\partial\omega_{1}}=R_{2}^{T}\mbox{ and }\frac{\partial\left(R_{1}R_{2}\right)}{\partial\omega_{2}}=I_{3}
 | 
						|
\]
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
and 
 | 
						|
\series bold
 | 
						|
between
 | 
						|
\series default
 | 
						|
 (Equation 
 | 
						|
\begin_inset CommandInset ref
 | 
						|
LatexCommand ref
 | 
						|
reference "eq:Dbetween1"
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
):
 | 
						|
\begin_inset Formula 
 | 
						|
\[
 | 
						|
\frac{\partial\left(R_{1}^{T}R_{2}\right)}{\partial\omega_{1}}=-R_{2}^{T}R_{1}=-between(R_{2},R_{1})\mbox{ and }\frac{\partial\left(R_{1}R_{2}\right)}{\partial\omega_{2}}=I_{3}
 | 
						|
\]
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Subsection
 | 
						|
Retractions
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Standard
 | 
						|
Absil 
 | 
						|
\begin_inset CommandInset citation
 | 
						|
LatexCommand cite
 | 
						|
after "page 58"
 | 
						|
key "Absil07book"
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
 discusses two possible retractions for 
 | 
						|
\begin_inset Formula $\SOthree$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 based on the QR decomposition or the polar decomposition of the matrix
 | 
						|
 
 | 
						|
\begin_inset Formula $R\Skew{\omega}$
 | 
						|
\end_inset
 | 
						|
 | 
						|
, but they are expensive.
 | 
						|
 Another retraction is based on the Cayley transform 
 | 
						|
\begin_inset Formula $\mathcal{C}:\sothree\rightarrow\SOthree$
 | 
						|
\end_inset
 | 
						|
 | 
						|
, a mapping from the skew-symmetric matrices to rotation matrices:
 | 
						|
\begin_inset Formula 
 | 
						|
\[
 | 
						|
Q=\mathcal{C}(\Omega)=(I-\Omega)(I+\Omega)^{-1}
 | 
						|
\]
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
Interestingly, the inverse Cayley transform 
 | 
						|
\begin_inset Formula $\mathcal{C}^{-1}:\SOthree\rightarrow\sothree$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 has the same form:
 | 
						|
\begin_inset Formula 
 | 
						|
\[
 | 
						|
\Omega=\mathcal{C}^{-1}(Q)=(I-Q)(I+Q)^{-1}
 | 
						|
\]
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
The retraction needs a factor 
 | 
						|
\begin_inset Formula $-\frac{1}{2}$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 however, to make it locally align with a geodesic: 
 | 
						|
\begin_inset Formula 
 | 
						|
\[
 | 
						|
R'=\retract_{R}(\omega)=R\mathcal{C}(-\frac{1}{2}\Skew{\omega})
 | 
						|
\]
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
Note that given 
 | 
						|
\begin_inset Formula $\omega=(x,y,z)$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 this has the closed-form expression below
 | 
						|
\begin_inset Formula 
 | 
						|
\[
 | 
						|
\frac{1}{4+x^{2}+y^{2}+z^{2}}\left[\begin{array}{ccc}
 | 
						|
4+x^{2}-y^{2}-z^{2} & 2xy-4z & 2xz+4y\\
 | 
						|
2xy+4z & 4-x^{2}+y^{2}-z^{2} & 2yz-4x\\
 | 
						|
2xz-4y & 2yz+4x & 4-x^{2}-y^{2}+z^{2}
 | 
						|
\end{array}\right]
 | 
						|
\]
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
 | 
						|
\begin_inset Formula 
 | 
						|
\[
 | 
						|
=\frac{1}{4+x^{2}+y^{2}+z^{2}}\left\{ 4(I+\Skew{\omega})+\left[\begin{array}{ccc}
 | 
						|
x^{2}-y^{2}-z^{2} & 2xy & 2xz\\
 | 
						|
2xy & -x^{2}+y^{2}-z^{2} & 2yz\\
 | 
						|
2xz & 2yz & -x^{2}-y^{2}+z^{2}
 | 
						|
\end{array}\right]\right\} 
 | 
						|
\]
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
so it can be seen to be a second-order correction on 
 | 
						|
\begin_inset Formula $(I+\Skew{\omega})$
 | 
						|
\end_inset
 | 
						|
 | 
						|
.
 | 
						|
 The corresponding approximation to the logarithmic map is:
 | 
						|
\begin_inset Formula 
 | 
						|
\[
 | 
						|
\Skew{\omega}=\retract_{R}^{-1}(R')=-2\mathcal{C}^{-1}\left(R^{T}R'\right)
 | 
						|
\]
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Section
 | 
						|
3D Rigid Transformations
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Subsection
 | 
						|
The derivatives of Actions
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Standard
 | 
						|
The action of 
 | 
						|
\begin_inset Formula $\SEthree$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 on 3D points is done by embedding the points in 
 | 
						|
\begin_inset Formula $\mathbb{R}^{4}$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 by using homogeneous coordinates
 | 
						|
\begin_inset Formula 
 | 
						|
\[
 | 
						|
\hat{q}=\left[\begin{array}{c}
 | 
						|
q\\
 | 
						|
1
 | 
						|
\end{array}\right]=f(T,p)=\left[\begin{array}{cc}
 | 
						|
R & t\\
 | 
						|
0 & 1
 | 
						|
\end{array}\right]\left[\begin{array}{c}
 | 
						|
p\\
 | 
						|
1
 | 
						|
\end{array}\right]=T\hat{p}
 | 
						|
\]
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
The quantity 
 | 
						|
\begin_inset Formula $\xihat\hat{p}$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 corresponds to a velocity in 
 | 
						|
\begin_inset Formula $\mathbb{R}^{4}$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 (in the local 
 | 
						|
\begin_inset Formula $T$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 frame), and equating it to 
 | 
						|
\begin_inset Formula $H(p)\xi$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 as in Equation 
 | 
						|
\begin_inset CommandInset ref
 | 
						|
LatexCommand ref
 | 
						|
reference "eq:Hp"
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
 yields the 
 | 
						|
\begin_inset Formula $4\times6$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 matrix 
 | 
						|
\begin_inset Formula $H(p)$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 | 
						|
\begin_inset Foot
 | 
						|
status collapsed
 | 
						|
 | 
						|
\begin_layout Plain Layout
 | 
						|
\begin_inset Formula $H(p)$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 can also be obtained by taking the 
 | 
						|
\begin_inset Formula $j^{th}$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 column of each of the 6 generators to multiply with components of 
 | 
						|
\begin_inset Formula $\hat{p}$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 | 
						|
\end_layout
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
: 
 | 
						|
\begin_inset Formula 
 | 
						|
\[
 | 
						|
\xihat\hat{p}=\left[\begin{array}{cc}
 | 
						|
\Skew{\omega} & v\\
 | 
						|
0 & 0
 | 
						|
\end{array}\right]\left[\begin{array}{c}
 | 
						|
p\\
 | 
						|
1
 | 
						|
\end{array}\right]=\left[\begin{array}{c}
 | 
						|
\omega\times p+v\\
 | 
						|
0
 | 
						|
\end{array}\right]=\left[\begin{array}{cc}
 | 
						|
\Skew{-p} & I_{3}\\
 | 
						|
0 & 0
 | 
						|
\end{array}\right]\left[\begin{array}{c}
 | 
						|
\omega\\
 | 
						|
v
 | 
						|
\end{array}\right]=H(p)\xi
 | 
						|
\]
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
Note how velocities are analogous to points at infinity in projective geometry:
 | 
						|
 they correspond to free vectors indicating a direction and magnitude of
 | 
						|
 change.
 | 
						|
 According to Theorem 
 | 
						|
\begin_inset CommandInset ref
 | 
						|
LatexCommand ref
 | 
						|
reference "th:Action"
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
, the derivative of the group action is then 
 | 
						|
\begin_inset Formula 
 | 
						|
\[
 | 
						|
\deriv{\left(T\hat{p}\right)}{\xi}=TH(p)=\left[\begin{array}{cc}
 | 
						|
R & t\\
 | 
						|
0 & 1
 | 
						|
\end{array}\right]\left[\begin{array}{cc}
 | 
						|
\Skew{-p} & I_{3}\\
 | 
						|
0 & 0
 | 
						|
\end{array}\right]=\left[\begin{array}{cc}
 | 
						|
R\Skew{-p} & R\\
 | 
						|
0 & 0
 | 
						|
\end{array}\right]
 | 
						|
\]
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
 | 
						|
\begin_inset Formula 
 | 
						|
\[
 | 
						|
\deriv{\left(T\hat{p}\right)}{\hat{p}}=\left[\begin{array}{cc}
 | 
						|
R & t\\
 | 
						|
0 & 1
 | 
						|
\end{array}\right]
 | 
						|
\]
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
in homogenous coordinates.
 | 
						|
 In 
 | 
						|
\begin_inset Formula $\Rthree$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 this becomes 
 | 
						|
\begin_inset Formula $R\left[\begin{array}{cc}
 | 
						|
-\Skew p & I_{3}\end{array}\right]$
 | 
						|
\end_inset
 | 
						|
 | 
						|
.
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Standard
 | 
						|
The derivative of the inverse action 
 | 
						|
\begin_inset Formula $T^{-1}p$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 is given by Theorem 
 | 
						|
\begin_inset CommandInset ref
 | 
						|
LatexCommand ref
 | 
						|
reference "Th:InverseAction"
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
:
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Standard
 | 
						|
 | 
						|
\family roman
 | 
						|
\series medium
 | 
						|
\shape up
 | 
						|
\size normal
 | 
						|
\emph off
 | 
						|
\bar no
 | 
						|
\noun off
 | 
						|
\color none
 | 
						|
\begin_inset Formula 
 | 
						|
\[
 | 
						|
\deriv{\left(T^{-1}\hat{p}\right)}{\xi}=-H\left(T^{-1}\hat{p}\right)=\left[\begin{array}{cc}
 | 
						|
\Skew{T^{-1}\hat{p}} & -I_{3}\end{array}\right]
 | 
						|
\]
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
 | 
						|
\begin_inset Formula 
 | 
						|
\[
 | 
						|
\deriv{\left(T^{-1}\hat{p}\right)}{\hat{p}}=\left[\begin{array}{cc}
 | 
						|
R^{T} & -R^{T}t\\
 | 
						|
0 & 1
 | 
						|
\end{array}\right]
 | 
						|
\]
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Example
 | 
						|
Let us examine a visual SLAM example.
 | 
						|
 We have 2D measurements 
 | 
						|
\begin_inset Formula $z_{ij}$
 | 
						|
\end_inset
 | 
						|
 | 
						|
, where each measurement is predicted by
 | 
						|
\begin_inset Formula 
 | 
						|
\[
 | 
						|
z_{ij}=h(T_{i},p_{j})=\pi(T_{i}^{-1}p_{j})=\pi(q)
 | 
						|
\]
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
where 
 | 
						|
\begin_inset Formula $T_{i}$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 is the 3D pose of the 
 | 
						|
\begin_inset Formula $i^{th}$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 camera, 
 | 
						|
\begin_inset Formula $p_{j}$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 is the location of the 
 | 
						|
\begin_inset Formula $j^{th}$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 point, 
 | 
						|
\begin_inset Formula $q=(x',y',z')=T^{-1}p$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 is the point in camera coordinates, and 
 | 
						|
\begin_inset Formula $\pi:(x,y,z)\mapsto(x/z,y/z)$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 is the camera projection function from Example 
 | 
						|
\begin_inset CommandInset ref
 | 
						|
LatexCommand ref
 | 
						|
reference "ex:projection"
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
.
 | 
						|
 By the chain rule, we then have
 | 
						|
\begin_inset Formula 
 | 
						|
\[
 | 
						|
\deriv{h(T,p)}{\xi}=\deriv{\pi(q)}q\deriv{(T^{-1}p)}{\xi}=\frac{1}{z'}\left[\begin{array}{ccc}
 | 
						|
1 & 0 & -x'/z'\\
 | 
						|
0 & 1 & -y'/z'
 | 
						|
\end{array}\right]\left[\begin{array}{cc}
 | 
						|
\Skew q & -I_{3}\end{array}\right]=\left[\begin{array}{cc}
 | 
						|
\pi'(q)\Skew q & -\pi'(q)\end{array}\right]
 | 
						|
\]
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
 | 
						|
\begin_inset Formula 
 | 
						|
\[
 | 
						|
\deriv{h(T,p)}p=\pi'(q)R^{T}
 | 
						|
\]
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Subsection
 | 
						|
Instantaneous Velocity
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Standard
 | 
						|
For rigid 3D transformations 
 | 
						|
\begin_inset Formula $T_{b}^{n}$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 from a body frame 
 | 
						|
\begin_inset Formula $b$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 to a navigation frame 
 | 
						|
\begin_inset Formula $n$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 we have the instantaneous spatial twist 
 | 
						|
\begin_inset Formula $\xi_{nb}^{n}$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 measured in the navigation frame,
 | 
						|
\begin_inset Formula 
 | 
						|
\[
 | 
						|
\hat{\xi}_{nb}^{n}\define\dot{T}_{b}^{n}\left(T_{b}^{n}\right)^{-1}
 | 
						|
\]
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
and the instantaneous body twist 
 | 
						|
\begin_inset Formula $\xi_{nb}^{b}$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 measured in the body frame:
 | 
						|
\begin_inset Formula 
 | 
						|
\[
 | 
						|
\hat{\xi}_{nb}^{b}\define\left(T_{b}^{n}\right)^{T}\dot{T}_{b}^{n}
 | 
						|
\]
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Subsection
 | 
						|
Pushforwards of Mappings
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Standard
 | 
						|
As we can express the Adjoint representation in terms of twist coordinates,
 | 
						|
 we have
 | 
						|
\begin_inset Formula 
 | 
						|
\[
 | 
						|
\left[\begin{array}{c}
 | 
						|
\omega'\\
 | 
						|
v'
 | 
						|
\end{array}\right]=\left[\begin{array}{cc}
 | 
						|
R & 0\\
 | 
						|
\Skew tR & R
 | 
						|
\end{array}\right]\left[\begin{array}{c}
 | 
						|
\omega\\
 | 
						|
v
 | 
						|
\end{array}\right]
 | 
						|
\]
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
Hence, as with 
 | 
						|
\begin_inset Formula $\SOthree$
 | 
						|
\end_inset
 | 
						|
 | 
						|
, we are now in a position to simply posit the derivative of 
 | 
						|
\series bold
 | 
						|
inverse
 | 
						|
\series default
 | 
						|
,
 | 
						|
\begin_inset Formula 
 | 
						|
\[
 | 
						|
\frac{\partial T^{-1}}{\partial\xi}=-\Ad T=-\left[\begin{array}{cc}
 | 
						|
R & 0\\
 | 
						|
\Skew tR & R
 | 
						|
\end{array}\right]
 | 
						|
\]
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
 | 
						|
\series bold
 | 
						|
compose
 | 
						|
\series default
 | 
						|
 in its first argument,
 | 
						|
\begin_inset Formula 
 | 
						|
\[
 | 
						|
\frac{\partial\left(T_{1}T_{2}\right)}{\partial\xi_{1}}=\Ad{T_{2}^{-1}}
 | 
						|
\]
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
 in its second argument,
 | 
						|
\begin_inset Formula 
 | 
						|
\[
 | 
						|
\frac{\partial\left(T_{1}T_{2}\right)}{\partial\xi_{2}}=I_{6}
 | 
						|
\]
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
 | 
						|
\series bold
 | 
						|
between
 | 
						|
\series default
 | 
						|
 in its first argument,
 | 
						|
\begin_inset Formula 
 | 
						|
\[
 | 
						|
\frac{\partial\left(T_{1}^{^{-1}}T_{2}\right)}{\partial\xi_{1}}=-\Ad{T_{2}^{^{-1}}T_{1}}=\left[\begin{array}{cc}
 | 
						|
-R_{2}^{T}R_{1} & 0\\
 | 
						|
R_{2}^{T}\left[t_{2}-t_{1}\right]_{\times}R_{1} & -R_{2}^{T}R_{1}
 | 
						|
\end{array}\right]
 | 
						|
\]
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
and in its second argument,
 | 
						|
\begin_inset Formula 
 | 
						|
\begin{eqnarray*}
 | 
						|
\frac{\partial\left(T_{1}^{^{-1}}T_{2}\right)}{\partial\xi_{1}} & = & I_{6}
 | 
						|
\end{eqnarray*}
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Subsection
 | 
						|
Retractions
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Standard
 | 
						|
For 
 | 
						|
\begin_inset Formula $\SEthree$
 | 
						|
\end_inset
 | 
						|
 | 
						|
, instead of using the true exponential map it is computationally more efficient
 | 
						|
 to design other retractions.
 | 
						|
 A first-order approximation to the exponential map does not quite cut it,
 | 
						|
 as it yields a 
 | 
						|
\begin_inset Formula $4\times4$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 matrix which is not in 
 | 
						|
\begin_inset Formula $\SEthree$
 | 
						|
\end_inset
 | 
						|
 | 
						|
: 
 | 
						|
\begin_inset Formula 
 | 
						|
\begin{eqnarray*}
 | 
						|
T\exp\xihat & \approx & T(I+\xihat)\\
 | 
						|
 & = & T\left(I_{4}+\left[\begin{array}{cc}
 | 
						|
\Skew{\omega} & v\\
 | 
						|
0 & 0
 | 
						|
\end{array}\right]\right)\\
 | 
						|
 & = & \left[\begin{array}{cc}
 | 
						|
R & t\\
 | 
						|
0 & 1
 | 
						|
\end{array}\right]\left[\begin{array}{cc}
 | 
						|
I_{3}+\Skew{\omega} & v\\
 | 
						|
0 & 1
 | 
						|
\end{array}\right]\\
 | 
						|
 & = & \left[\begin{array}{cc}
 | 
						|
R\left(I_{3}+\Skew{\omega}\right) & t+Rv\\
 | 
						|
0 & 1
 | 
						|
\end{array}\right]
 | 
						|
\end{eqnarray*}
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
However, we can make it into a retraction by using any retraction defined
 | 
						|
 for 
 | 
						|
\begin_inset Formula $\SOthree$
 | 
						|
\end_inset
 | 
						|
 | 
						|
, including, as below, using the exponential map 
 | 
						|
\begin_inset Formula $Re^{\Skew{\omega}}$
 | 
						|
\end_inset
 | 
						|
 | 
						|
:
 | 
						|
\begin_inset Formula 
 | 
						|
\[
 | 
						|
\retract_{T}\left(\left[\begin{array}{c}
 | 
						|
\omega\\
 | 
						|
v
 | 
						|
\end{array}\right]\right)=\left[\begin{array}{cc}
 | 
						|
R & t\\
 | 
						|
0 & 1
 | 
						|
\end{array}\right]\left[\begin{array}{cc}
 | 
						|
e^{\Skew{\omega}} & v\\
 | 
						|
0 & 1
 | 
						|
\end{array}\right]=\left[\begin{array}{cc}
 | 
						|
Re^{\Skew{\omega}} & t+Rv\\
 | 
						|
0 & 1
 | 
						|
\end{array}\right]
 | 
						|
\]
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
Similarly, for a second order approximation we have
 | 
						|
\begin_inset Formula 
 | 
						|
\begin{eqnarray*}
 | 
						|
T\exp\xihat & \approx & T(I+\xihat+\frac{\xihat^{2}}{2})\\
 | 
						|
 & = & T\left(I_{4}+\left[\begin{array}{cc}
 | 
						|
\Skew{\omega} & v\\
 | 
						|
0 & 0
 | 
						|
\end{array}\right]+\frac{1}{2}\left[\begin{array}{cc}
 | 
						|
\Skew{\omega} & v\\
 | 
						|
0 & 0
 | 
						|
\end{array}\right]\left[\begin{array}{cc}
 | 
						|
\Skew{\omega} & v\\
 | 
						|
0 & 0
 | 
						|
\end{array}\right]\right)\\
 | 
						|
 & = & \left[\begin{array}{cc}
 | 
						|
R & t\\
 | 
						|
0 & 1
 | 
						|
\end{array}\right]\left(\left[\begin{array}{cc}
 | 
						|
I_{3}+\Skew{\omega}+\frac{1}{2}\Skew{\omega}^{2} & v+\frac{1}{2}\Skew{\omega}v\\
 | 
						|
0 & 1
 | 
						|
\end{array}\right]\right)\\
 | 
						|
 & = & \left[\begin{array}{cc}
 | 
						|
R\left(I_{3}+\Skew{\omega}+\frac{1}{2}\Skew{\omega}^{2}\right) & t+R\left[v+\left(\omega\times v\right)/2\right]\\
 | 
						|
0 & 1
 | 
						|
\end{array}\right]
 | 
						|
\end{eqnarray*}
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
inspiring the retraction
 | 
						|
\begin_inset Formula 
 | 
						|
\[
 | 
						|
\retract_{T}\left(\left[\begin{array}{c}
 | 
						|
\omega\\
 | 
						|
v
 | 
						|
\end{array}\right]\right)=\left[\begin{array}{cc}
 | 
						|
R & t\\
 | 
						|
0 & 1
 | 
						|
\end{array}\right]\left[\begin{array}{cc}
 | 
						|
e^{\Skew{\omega}} & v+\left(\omega\times v\right)/2\\
 | 
						|
0 & 1
 | 
						|
\end{array}\right]=\left[\begin{array}{cc}
 | 
						|
Re^{\Skew{\omega}} & t+R\left[v+\left(\omega\times v\right)/2\right]\\
 | 
						|
0 & 1
 | 
						|
\end{array}\right]
 | 
						|
\]
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Standard
 | 
						|
\begin_inset Newpage pagebreak
 | 
						|
\end_inset
 | 
						|
 | 
						|
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Section
 | 
						|
The Sphere 
 | 
						|
\begin_inset Formula $S^{2}$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Subsection
 | 
						|
Definitions
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Standard
 | 
						|
The sphere 
 | 
						|
\begin_inset Formula $S^{2}$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 is the set of all unit vectors in 
 | 
						|
\begin_inset Formula $\Rthree$
 | 
						|
\end_inset
 | 
						|
 | 
						|
, i.e., all directions in three-space: 
 | 
						|
\begin_inset Formula 
 | 
						|
\[
 | 
						|
S^{2}=\{p\in\Rthree|\left\Vert p\right\Vert =1\}
 | 
						|
\]
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
The tangent space 
 | 
						|
\begin_inset Formula $T_{p}S^{2}$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 at a point
 | 
						|
\begin_inset Formula $p$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 consists of three-vectors 
 | 
						|
\begin_inset Formula $\xihat$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 such that 
 | 
						|
\begin_inset Formula $\xihat$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 is tangent to 
 | 
						|
\begin_inset Formula $S^{2}$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 at 
 | 
						|
\begin_inset Formula $p$
 | 
						|
\end_inset
 | 
						|
 | 
						|
, i.e., 
 | 
						|
\begin_inset Formula 
 | 
						|
\[
 | 
						|
T_{p}S^{2}\define\left\{ \xihat\in\Rthree|p^{T}\xihat=0\right\} 
 | 
						|
\]
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
While not a Lie group, we can define an exponential map, which is given
 | 
						|
 in Ma et.
 | 
						|
 al 
 | 
						|
\begin_inset CommandInset citation
 | 
						|
LatexCommand cite
 | 
						|
key "Ma01ijcv"
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
, as well as in this CVPR tutorial by Anuj Srivastava: 
 | 
						|
\begin_inset CommandInset href
 | 
						|
LatexCommand href
 | 
						|
name "http://stat.fsu.edu/~anuj/CVPR_Tutorial/Part2.pdf"
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
.
 | 
						|
 
 | 
						|
\begin_inset Formula 
 | 
						|
\[
 | 
						|
\exp_{p}\xihat=\cos\left(\left\Vert \xihat\right\Vert \right)p+\sin\left(\left\Vert \xihat\right\Vert \right)\frac{\xihat}{\left\Vert \xihat\right\Vert }
 | 
						|
\]
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
The latter also gives the inverse, i.e., get the tangent vector 
 | 
						|
\begin_inset Formula $z$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 to go from 
 | 
						|
\begin_inset Formula $p$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 to 
 | 
						|
\begin_inset Formula $q$
 | 
						|
\end_inset
 | 
						|
 | 
						|
:
 | 
						|
\begin_inset Formula 
 | 
						|
\[
 | 
						|
z=\log_{p}q=\frac{\theta}{\sin\theta}\left(q-p\cos\theta\right)p
 | 
						|
\]
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
with 
 | 
						|
\begin_inset Formula $\theta=\cos^{-1}\left(p^{T}q\right)$
 | 
						|
\end_inset
 | 
						|
 | 
						|
.
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Subsection
 | 
						|
Local Coordinates
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Standard
 | 
						|
We can find a basis 
 | 
						|
\begin_inset Formula $B_{p}$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 for the tangent space 
 | 
						|
\begin_inset Formula $T_{p}S^{2}$
 | 
						|
\end_inset
 | 
						|
 | 
						|
, with 
 | 
						|
\begin_inset Formula $B_{p}=\left[b_{1}|b_{2}\right]$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 a 
 | 
						|
\begin_inset Formula $3\times2$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 matrix, by either
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Enumerate
 | 
						|
Decompose 
 | 
						|
\begin_inset Formula $p=QR$
 | 
						|
\end_inset
 | 
						|
 | 
						|
, with 
 | 
						|
\begin_inset Formula $Q$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 orthonormal and 
 | 
						|
\begin_inset Formula $R$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 of the form 
 | 
						|
\begin_inset Formula $[1\,0\,0]^{T}$
 | 
						|
\end_inset
 | 
						|
 | 
						|
, and hence 
 | 
						|
\begin_inset Formula $p=Q_{1}$
 | 
						|
\end_inset
 | 
						|
 | 
						|
.
 | 
						|
 The basis 
 | 
						|
\begin_inset Formula $B_{p}=\left[Q_{2}|Q_{3}\right]$
 | 
						|
\end_inset
 | 
						|
 | 
						|
, i.e., the last two columns of 
 | 
						|
\begin_inset Formula $Q$
 | 
						|
\end_inset
 | 
						|
 | 
						|
.
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Enumerate
 | 
						|
Form 
 | 
						|
\begin_inset Formula $b_{1}=p\times a$
 | 
						|
\end_inset
 | 
						|
 | 
						|
, with 
 | 
						|
\begin_inset Formula $a$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 (consistently) chosen to be non-parallel to 
 | 
						|
\begin_inset Formula $p$
 | 
						|
\end_inset
 | 
						|
 | 
						|
, and 
 | 
						|
\begin_inset Formula $b_{2}=p\times b_{1}$
 | 
						|
\end_inset
 | 
						|
 | 
						|
.
 | 
						|
 
 | 
						|
\begin_inset Note Note
 | 
						|
status collapsed
 | 
						|
 | 
						|
\begin_layout Plain Layout
 | 
						|
To choose 
 | 
						|
\begin_inset Formula $a$
 | 
						|
\end_inset
 | 
						|
 | 
						|
, one way is to divide the sphere into regions, e.g., pick the axis 
 | 
						|
\begin_inset Formula $e_{i}$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 such that 
 | 
						|
\begin_inset Formula $e_{i}^{T}p$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 is smallest.
 | 
						|
 However, that leads to discontinuous boundaries.
 | 
						|
 Since 
 | 
						|
\begin_inset Formula $0\leq\left|e_{i}^{T}p\right|\leq1$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 for all 
 | 
						|
\begin_inset Formula $p\in S^{2}$
 | 
						|
\end_inset
 | 
						|
 | 
						|
, a better idea might be to use a mixture, e.g.,
 | 
						|
\begin_inset Formula 
 | 
						|
\[
 | 
						|
a=\frac{1}{2(x^{2}+y^{2}+z^{2})}\left[\begin{array}{c}
 | 
						|
y^{2}+z^{2}\\
 | 
						|
x^{2}+z^{2}\\
 | 
						|
x^{2}+y^{2}
 | 
						|
\end{array}\right]
 | 
						|
\]
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
 | 
						|
\end_layout
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Standard
 | 
						|
Now we can write 
 | 
						|
\begin_inset Formula $\xihat=B_{p}\xi$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 with 
 | 
						|
\begin_inset Formula $\xi\in R^{2}$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 the 2D coordinate in the tangent plane basis 
 | 
						|
\begin_inset Formula $B_{p}$
 | 
						|
\end_inset
 | 
						|
 | 
						|
.
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Subsection
 | 
						|
Retraction
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Standard
 | 
						|
The exponential map uses 
 | 
						|
\begin_inset Formula $\cos$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 and 
 | 
						|
\begin_inset Formula $\sin$
 | 
						|
\end_inset
 | 
						|
 | 
						|
, and is more than we need for optimization.
 | 
						|
 Suppose we have a point 
 | 
						|
\begin_inset Formula $p\in S^{2}$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 and a 3-vector 
 | 
						|
\begin_inset Formula $\xihat\in T_{p}S^{2}$
 | 
						|
\end_inset
 | 
						|
 | 
						|
, Absil 
 | 
						|
\begin_inset CommandInset citation
 | 
						|
LatexCommand cite
 | 
						|
key "Absil07book"
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
 tells us we can simply add 
 | 
						|
\begin_inset Formula $\xihat$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 to 
 | 
						|
\begin_inset Formula $p$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 and renormalize to get a new point 
 | 
						|
\begin_inset Formula $q$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 on the sphere.
 | 
						|
 This is what he calls a 
 | 
						|
\series bold
 | 
						|
retraction 
 | 
						|
\family roman
 | 
						|
\series medium
 | 
						|
\shape up
 | 
						|
\size normal
 | 
						|
\emph off
 | 
						|
\bar no
 | 
						|
\strikeout off
 | 
						|
\uuline off
 | 
						|
\uwave off
 | 
						|
\noun off
 | 
						|
\color none
 | 
						|
 | 
						|
\begin_inset Formula $\retract_{p}(\xihat)$
 | 
						|
\end_inset
 | 
						|
 | 
						|
,
 | 
						|
\family default
 | 
						|
\series default
 | 
						|
\shape default
 | 
						|
\size default
 | 
						|
\emph default
 | 
						|
\bar default
 | 
						|
\strikeout default
 | 
						|
\uuline default
 | 
						|
\uwave default
 | 
						|
\noun default
 | 
						|
\color inherit
 | 
						|
 
 | 
						|
\begin_inset Formula 
 | 
						|
\[
 | 
						|
q=\retract_{p}(\xihat)=\frac{p+\xihat}{\left\Vert p+z\right\Vert }=\frac{p+\xihat}{\alpha}
 | 
						|
\]
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
with 
 | 
						|
\begin_inset Formula $\alpha$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 the norm of 
 | 
						|
\begin_inset Formula $p+\xihat$
 | 
						|
\end_inset
 | 
						|
 | 
						|
.
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Standard
 | 
						|
We can also define a retraction from local coordinates 
 | 
						|
\begin_inset Formula $\xi\in\Rtwo$
 | 
						|
\end_inset
 | 
						|
 | 
						|
: 
 | 
						|
\begin_inset Formula 
 | 
						|
\[
 | 
						|
q=\retract_{p}(\xi)=\frac{p+B_{p}\xi}{\left\Vert p+B_{p}\xi\right\Vert }
 | 
						|
\]
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Subsubsection*
 | 
						|
Inverse Retraction
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Standard
 | 
						|
If 
 | 
						|
\begin_inset Formula $\xihat=B_{p}\xi$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 with 
 | 
						|
\begin_inset Formula $\xi\in R^{2}$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 the 2D coordinate in the tangent plane basis 
 | 
						|
\begin_inset Formula $B_{p}$
 | 
						|
\end_inset
 | 
						|
 | 
						|
, we have
 | 
						|
\begin_inset Formula 
 | 
						|
\[
 | 
						|
\xi=\frac{B_{p}^{T}q}{p^{T}q}
 | 
						|
\]
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Proof
 | 
						|
We seek 
 | 
						|
\begin_inset Formula 
 | 
						|
\[
 | 
						|
\alpha q=p+B_{p}\xi
 | 
						|
\]
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
If we multiply both sides with 
 | 
						|
\begin_inset Formula $B_{p}^{T}$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 (project on the basis 
 | 
						|
\begin_inset Formula $B_{p}$
 | 
						|
\end_inset
 | 
						|
 | 
						|
) we obtain
 | 
						|
\begin_inset Formula 
 | 
						|
\[
 | 
						|
\alpha B_{p}^{T}q=B_{p}^{T}p+B_{p}^{T}B_{p}\xi
 | 
						|
\]
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
and because 
 | 
						|
\begin_inset Formula $B_{p}^{T}p=0$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 and 
 | 
						|
\begin_inset Formula $B_{p}^{T}B_{p}=I$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 we trivially obtain 
 | 
						|
\begin_inset Formula $\xi$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 as the scaled projection 
 | 
						|
\begin_inset Formula $B_{p}^{T}q$
 | 
						|
\end_inset
 | 
						|
 | 
						|
:
 | 
						|
\begin_inset Formula 
 | 
						|
\[
 | 
						|
\xi=\alpha B_{p}^{T}q
 | 
						|
\]
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
To recover the scale factor 
 | 
						|
\begin_inset Formula $\alpha$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 we multiply with 
 | 
						|
\begin_inset Formula $p^{T}$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 on both sides, and we get
 | 
						|
\begin_inset Formula 
 | 
						|
\[
 | 
						|
\alpha p^{T}q=p^{T}p+p^{T}B_{p}\xi
 | 
						|
\]
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
Since 
 | 
						|
\begin_inset Formula $p^{T}p=1$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 and 
 | 
						|
\begin_inset Formula $p^{T}B_{p}\xi=0$
 | 
						|
\end_inset
 | 
						|
 | 
						|
, we then obtain 
 | 
						|
\begin_inset Formula $\alpha=1/(p^{T}q)$
 | 
						|
\end_inset
 | 
						|
 | 
						|
, which completes the proof.
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Subsection
 | 
						|
Rotation acting on a 3D Direction
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Standard
 | 
						|
Rotating a point 
 | 
						|
\begin_inset Formula $p\in S^{2}$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 on the sphere obviously yields another point 
 | 
						|
\begin_inset Formula $q=Rp\in S^{2}$
 | 
						|
\end_inset
 | 
						|
 | 
						|
, as rotation preserves the norm.
 | 
						|
 The derivative of 
 | 
						|
\begin_inset Formula $f(R,p)$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 with respect to 
 | 
						|
\begin_inset Formula $R$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 can be found by equating
 | 
						|
\begin_inset Formula 
 | 
						|
\[
 | 
						|
Rp+B_{Rp}\xi=R(I+\Skew{\omega})p=Rp+R\Skew{\omega}p
 | 
						|
\]
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
 | 
						|
\begin_inset Formula 
 | 
						|
\[
 | 
						|
B_{Rp}\xi=-R\Skew p\omega
 | 
						|
\]
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
 | 
						|
\begin_inset Formula 
 | 
						|
\[
 | 
						|
\xi=-B_{Rp}^{T}R\Skew p\omega
 | 
						|
\]
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
whereas with respect to 
 | 
						|
\begin_inset Formula $p$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 we have
 | 
						|
\begin_inset Formula 
 | 
						|
\[
 | 
						|
Rp+B_{Rp}\xi_{q}=R(p+B_{p}\xi_{p})
 | 
						|
\]
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
 | 
						|
\begin_inset Formula 
 | 
						|
\[
 | 
						|
\xi_{q}=B_{Rp}^{T}RB_{p}\xi_{p}
 | 
						|
\]
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Standard
 | 
						|
In other words, the Jacobian matrix is given by
 | 
						|
\family roman
 | 
						|
\series medium
 | 
						|
\shape up
 | 
						|
\size normal
 | 
						|
\emph off
 | 
						|
\bar no
 | 
						|
\strikeout off
 | 
						|
\uuline off
 | 
						|
\uwave off
 | 
						|
\noun off
 | 
						|
\color none
 | 
						|
 | 
						|
\begin_inset Formula 
 | 
						|
\[
 | 
						|
f'(R,p)=\left[\begin{array}{cc}
 | 
						|
-B_{Rp}^{T}R\Skew p & B_{Rp}^{T}RB_{p}\end{array}\right]
 | 
						|
\]
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Subsection
 | 
						|
Error between 3D Directions
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Standard
 | 
						|
We would like to define a distance metric 
 | 
						|
\begin_inset Formula $e(p,q)$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 between two directions 
 | 
						|
\begin_inset Formula $p,q\in S^{2}$
 | 
						|
\end_inset
 | 
						|
 | 
						|
.
 | 
						|
 An obvious choice is
 | 
						|
\begin_inset Formula 
 | 
						|
\[
 | 
						|
\theta=\cos^{-1}\left(p^{T}q\right)
 | 
						|
\]
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
which is exactly the distance along the shortest path (geodesic) on the
 | 
						|
 sphere, i.e., this is the distance metric associated with the exponential.
 | 
						|
 The advantage is that it is defined everywhere, but it involves 
 | 
						|
\begin_inset Formula $\cos^{-1}$
 | 
						|
\end_inset
 | 
						|
 | 
						|
.
 | 
						|
 The derivative with respect to a change in 
 | 
						|
\begin_inset Formula $q$
 | 
						|
\end_inset
 | 
						|
 | 
						|
, via 
 | 
						|
\begin_inset Formula $\xi$
 | 
						|
\end_inset
 | 
						|
 | 
						|
, is then
 | 
						|
\begin_inset Formula 
 | 
						|
\[
 | 
						|
\frac{\partial\theta(p,q)}{\partial\xi}=\frac{\partial\cos^{-1}\left(p^{T}q\right)}{\partial\xi}=\frac{p^{T}B_{q}}{\sqrt{1-\left(p^{T}q\right)^{2}}}
 | 
						|
\]
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
which is also undefined for 
 | 
						|
\begin_inset Formula $p=q$
 | 
						|
\end_inset
 | 
						|
 | 
						|
.
 | 
						|
 
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Standard
 | 
						|
A simpler metric is derived from the retraction but only holds when 
 | 
						|
\begin_inset Formula $q\approx p$
 | 
						|
\end_inset
 | 
						|
 | 
						|
.
 | 
						|
 It simply projects 
 | 
						|
\begin_inset Formula $q$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 onto the local coordinate basis 
 | 
						|
\begin_inset Formula $B_{p}$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 defined by 
 | 
						|
\begin_inset Formula $p$
 | 
						|
\end_inset
 | 
						|
 | 
						|
, and takes the norm:
 | 
						|
\begin_inset Formula 
 | 
						|
\[
 | 
						|
\theta(p,q)=\left\Vert B_{p}^{T}q\right\Vert 
 | 
						|
\]
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
The derivative with respect to a change in 
 | 
						|
\begin_inset Formula $q$
 | 
						|
\end_inset
 | 
						|
 | 
						|
, via 
 | 
						|
\begin_inset Formula $\xi$
 | 
						|
\end_inset
 | 
						|
 | 
						|
, is then
 | 
						|
\begin_inset Formula 
 | 
						|
\[
 | 
						|
\frac{\partial\theta(p,q)}{\partial\xi_{q}}=\frac{\partial}{\partial\xi_{q}}\sqrt{\left(B_{p}^{T}q\right)^{2}}=\frac{1}{\sqrt{\left(B_{p}^{T}q\right)^{2}}}\left(B_{p}^{T}q\right)B_{p}^{T}B_{q}=\frac{B_{p}^{T}q}{\theta(q;p)}B_{p}^{T}B_{q}
 | 
						|
\]
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
Note that this again is undefined for 
 | 
						|
\begin_inset Formula $\theta=0$
 | 
						|
\end_inset
 | 
						|
 | 
						|
.
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Standard
 | 
						|
For use in a probabilistic factor, a signed, vector-valued error will not
 | 
						|
 have the discontinuity:
 | 
						|
\begin_inset Formula 
 | 
						|
\[
 | 
						|
\theta(p,q)=B_{p}^{T}q
 | 
						|
\]
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
Note this is the inverse retraction up to a scale.
 | 
						|
 The derivative with respect to a change in 
 | 
						|
\begin_inset Formula $q$
 | 
						|
\end_inset
 | 
						|
 | 
						|
, via 
 | 
						|
\begin_inset Formula $\xi$
 | 
						|
\end_inset
 | 
						|
 | 
						|
, is found by 
 | 
						|
\begin_inset Formula 
 | 
						|
\[
 | 
						|
\frac{\partial\theta(p,q)}{\partial\xi_{q}}=B_{p}^{T}\frac{\partial q}{\partial\xi_{q}}=B_{p}^{T}B_{q}
 | 
						|
\]
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Subsubsection*
 | 
						|
Application
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Standard
 | 
						|
We can use the above to find the unknown rotation between a camera and an
 | 
						|
 IMU.
 | 
						|
 If we measure the rotation between two frames as 
 | 
						|
\begin_inset Formula $c_{1}Zc_{2}$
 | 
						|
\end_inset
 | 
						|
 | 
						|
, and the predicted rotation from the IMU is 
 | 
						|
\begin_inset Formula $i_{1}Ri_{2}$
 | 
						|
\end_inset
 | 
						|
 | 
						|
, then we can predict
 | 
						|
\begin_inset Formula 
 | 
						|
\[
 | 
						|
c_{1}Zc_{2}=iRc^{T}\cdot i_{1}Ri_{2}\cdot iRc
 | 
						|
\]
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
and the axis of the incremental rotations will relate as
 | 
						|
\begin_inset Formula 
 | 
						|
\[
 | 
						|
p=iRc\cdot z
 | 
						|
\]
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
with 
 | 
						|
\begin_inset Formula $p$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 the angular velocity axis in the IMU frame, and 
 | 
						|
\begin_inset Formula $z$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 the measured axis of rotation between the two cameras.
 | 
						|
 Note this only makes sense if the rotation is non-zero.
 | 
						|
 So, given an initial estimate 
 | 
						|
\begin_inset Formula $R$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 for the unknown rotation 
 | 
						|
\begin_inset Formula $iRc$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 between IMU and camera, the derivative of the error is (using 
 | 
						|
\begin_inset CommandInset ref
 | 
						|
LatexCommand ref
 | 
						|
reference "eq:Rot3action"
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
)
 | 
						|
\family roman
 | 
						|
\series medium
 | 
						|
\shape up
 | 
						|
\size normal
 | 
						|
\emph off
 | 
						|
\bar no
 | 
						|
\strikeout off
 | 
						|
\uuline off
 | 
						|
\uwave off
 | 
						|
\noun off
 | 
						|
\color none
 | 
						|
 | 
						|
\begin_inset Formula 
 | 
						|
\[
 | 
						|
\frac{\partial\theta(Rz;p)}{\partial\omega}=B_{p}^{T}\left(Rz\right)B_{p}^{T}B_{Rz}\frac{\partial\left(Rz\right)}{\partial\omega}=B_{p}^{T}\left(Rz\right)B_{p}^{T}R\Skew z
 | 
						|
\]
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
Here the 
 | 
						|
\begin_inset Formula $2\times3$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 matrix 
 | 
						|
\begin_inset Formula $B_{Rz}^{T}\Skew z$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 translates changes in 
 | 
						|
\begin_inset Formula $R$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 to changes in 
 | 
						|
\begin_inset Formula $Rz$
 | 
						|
\end_inset
 | 
						|
 | 
						|
, and the 
 | 
						|
\begin_inset Formula $1\times2$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 matrix 
 | 
						|
\begin_inset Formula $B_{p}^{T}\left(Rz\right)$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 describes the downstream effect on the error metric.
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Section
 | 
						|
The Essential Matrix Manifold
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Standard
 | 
						|
We parameterize essential matrices as a pair 
 | 
						|
\begin_inset Formula $(R,t)$
 | 
						|
\end_inset
 | 
						|
 | 
						|
, where 
 | 
						|
\begin_inset Formula $R\in\SOthree$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 and 
 | 
						|
\begin_inset Formula $t\in S^{2}$
 | 
						|
\end_inset
 | 
						|
 | 
						|
, the unit sphere.
 | 
						|
 The epipolar matrix is then given by 
 | 
						|
\begin_inset Formula 
 | 
						|
\[
 | 
						|
E=\Skew tR
 | 
						|
\]
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
and the epipolar error given two corresponding points 
 | 
						|
\begin_inset Formula $a$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 and 
 | 
						|
\begin_inset Formula $b$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 is
 | 
						|
\begin_inset Formula 
 | 
						|
\[
 | 
						|
e(R,t;a,b)=a^{T}Eb
 | 
						|
\]
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
We are of course interested in the derivative with respect to orientation
 | 
						|
 (using 
 | 
						|
\begin_inset CommandInset ref
 | 
						|
LatexCommand ref
 | 
						|
reference "eq:Rot3action"
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
)
 | 
						|
\begin_inset Formula 
 | 
						|
\[
 | 
						|
\frac{\partial(a^{T}[t]_{\times}Rb)}{\partial\omega}=a^{T}[t]_{\times}\frac{\partial(Rb)}{\partial\omega}=-a^{T}[t]_{\times}R\Skew b=-a^{T}E[b]_{\times}
 | 
						|
\]
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
and with respect to change in the direction 
 | 
						|
\begin_inset Formula $t$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 
 | 
						|
\begin_inset Formula 
 | 
						|
\[
 | 
						|
\frac{\partial e(a^{T}[t]_{\times}Rb)}{\partial\xi}=a^{T}\frac{\partial(B\xi\times Rb)}{\partial v}=-a^{T}[Rb]_{\times}B
 | 
						|
\]
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
where we made use of the fact that the retraction can be written as 
 | 
						|
\begin_inset Formula $t+B\xi$
 | 
						|
\end_inset
 | 
						|
 | 
						|
, with 
 | 
						|
\begin_inset Formula $B$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 a local basis, and we made use of 
 | 
						|
\begin_inset CommandInset ref
 | 
						|
LatexCommand eqref
 | 
						|
reference "eq:Dcross1"
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
: 
 | 
						|
\family roman
 | 
						|
\series medium
 | 
						|
\shape up
 | 
						|
\size normal
 | 
						|
\emph off
 | 
						|
\bar no
 | 
						|
\strikeout off
 | 
						|
\uuline off
 | 
						|
\uwave off
 | 
						|
\noun off
 | 
						|
\color none
 | 
						|
 | 
						|
\begin_inset Formula 
 | 
						|
\[
 | 
						|
\frac{\partial(a\times b)}{\partial a}=\Skew{-b}
 | 
						|
\]
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Section
 | 
						|
2D Line Segments (Ocaml)
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Standard
 | 
						|
The error between an infinite line 
 | 
						|
\begin_inset Formula $(a,b,c)$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 and a 2D line segment 
 | 
						|
\begin_inset Formula $((x1,y1),(x2,y2))$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 is defined in Line3.ml.
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Section
 | 
						|
Line3vd (Ocaml)
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Standard
 | 
						|
One representation of a line is through 2 vectors 
 | 
						|
\begin_inset Formula $(v,d)$
 | 
						|
\end_inset
 | 
						|
 | 
						|
, where 
 | 
						|
\begin_inset Formula $v$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 is the direction and the vector 
 | 
						|
\begin_inset Formula $d$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 points from the orgin to the closest point on the line.
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Standard
 | 
						|
In this representation, transforming a 3D line from a world coordinate frame
 | 
						|
 to a camera at 
 | 
						|
\begin_inset Formula $(R_{w}^{c},t^{w})$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 is done by
 | 
						|
\begin_inset Formula 
 | 
						|
\[
 | 
						|
v^{c}=R_{w}^{c}v^{w}
 | 
						|
\]
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
 | 
						|
\begin_inset Formula 
 | 
						|
\[
 | 
						|
d^{c}=R_{w}^{c}\left(d^{w}+(t^{w}v^{w})v^{w}-t^{w}\right)
 | 
						|
\]
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Section
 | 
						|
Line3 (Ocaml)
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Standard
 | 
						|
For 3D lines, we use a parameterization due to C.J.
 | 
						|
 Taylor, using a rotation matrix 
 | 
						|
\begin_inset Formula $R$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 and 2 scalars 
 | 
						|
\begin_inset Formula $a$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 and 
 | 
						|
\begin_inset Formula $b$
 | 
						|
\end_inset
 | 
						|
 | 
						|
.
 | 
						|
 The line direction 
 | 
						|
\begin_inset Formula $v$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 is simply the Z-axis of the rotated frame, i.e., 
 | 
						|
\begin_inset Formula $v=R_{3}$
 | 
						|
\end_inset
 | 
						|
 | 
						|
, while the vector 
 | 
						|
\begin_inset Formula $d$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 is given by 
 | 
						|
\begin_inset Formula $d=aR_{1}+bR_{2}$
 | 
						|
\end_inset
 | 
						|
 | 
						|
.
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Standard
 | 
						|
Now, we will 
 | 
						|
\emph on
 | 
						|
not
 | 
						|
\emph default
 | 
						|
 use the incremental rotation scheme we used for rotations: because the
 | 
						|
 matrix R translates from the line coordinate frame to the world frame,
 | 
						|
 we need to apply the incremental rotation on the right-side:
 | 
						|
\begin_inset Formula 
 | 
						|
\[
 | 
						|
R'=R(I+\Omega)
 | 
						|
\]
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
Projecting a line to 2D can be done easily, as both 
 | 
						|
\begin_inset Formula $v$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 and 
 | 
						|
\begin_inset Formula $d$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 are also the 2D homogenous coordinates of two points on the projected line,
 | 
						|
 and hence we have
 | 
						|
\begin_inset Formula 
 | 
						|
\begin{eqnarray*}
 | 
						|
l & = & v\times d\\
 | 
						|
 & = & R_{3}\times\left(aR_{1}+bR_{2}\right)\\
 | 
						|
 & = & a\left(R_{3}\times R_{1}\right)+b\left(R_{3}\times R_{2}\right)\\
 | 
						|
 & = & aR_{2}-bR_{1}
 | 
						|
\end{eqnarray*}
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
This can be written as a rotation of a point,
 | 
						|
\begin_inset Formula 
 | 
						|
\[
 | 
						|
l=R\left(\begin{array}{c}
 | 
						|
-b\\
 | 
						|
a\\
 | 
						|
0
 | 
						|
\end{array}\right)
 | 
						|
\]
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
but because the incremental rotation is now done on the right, we need to
 | 
						|
 figure out the derivatives again:
 | 
						|
\begin_inset Formula 
 | 
						|
\begin{equation}
 | 
						|
\frac{\partial(R(I+\Omega)x)}{\partial\omega}=\frac{\partial(R\Omega x)}{\partial\omega}=R\frac{\partial(\Omega x)}{\partial\omega}=R\Skew{-x}\label{eq:rotateRight}
 | 
						|
\end{equation}
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
and hence the derivative of the projection 
 | 
						|
\begin_inset Formula $l$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 with respect to the rotation matrix 
 | 
						|
\begin_inset Formula $R$
 | 
						|
\end_inset
 | 
						|
 | 
						|
of the 3D line is 
 | 
						|
\begin_inset Formula 
 | 
						|
\begin{equation}
 | 
						|
\frac{\partial(l)}{\partial\omega}=R\Skew{\left(\begin{array}{c}
 | 
						|
b\\
 | 
						|
-a\\
 | 
						|
0
 | 
						|
\end{array}\right)}=\left[\begin{array}{ccc}
 | 
						|
aR_{3} & bR_{3} & -(aR_{1}+bR_{2})\end{array}\right]
 | 
						|
\end{equation}
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
or the 
 | 
						|
\begin_inset Formula $a,b$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 scalars:
 | 
						|
\begin_inset Formula 
 | 
						|
\[
 | 
						|
\frac{\partial(l)}{\partial a}=R_{2}
 | 
						|
\]
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
 | 
						|
\begin_inset Formula 
 | 
						|
\[
 | 
						|
\frac{\partial(l)}{\partial b}=-R_{1}
 | 
						|
\]
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Standard
 | 
						|
Transforming a 3D line 
 | 
						|
\begin_inset Formula $(R,(a,b))$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 from a world coordinate frame to a camera frame 
 | 
						|
\begin_inset Formula $(R_{w}^{c},t^{w})$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 is done by
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Standard
 | 
						|
\begin_inset Formula 
 | 
						|
\[
 | 
						|
R'=R_{w}^{c}R
 | 
						|
\]
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
 | 
						|
\begin_inset Formula 
 | 
						|
\[
 | 
						|
a'=a-R_{1}^{T}t^{w}
 | 
						|
\]
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
 | 
						|
\begin_inset Formula 
 | 
						|
\[
 | 
						|
b'=b-R_{2}^{T}t^{w}
 | 
						|
\]
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
Again, we need to redo the derivatives, as R is incremented from the right.
 | 
						|
 The first argument is incremented from the left, but the result is incremented
 | 
						|
 on the right:
 | 
						|
\begin_inset Formula 
 | 
						|
\begin{eqnarray*}
 | 
						|
R'(I+\Omega')=(AB)(I+\Omega') & = & (I+\Skew{S\omega})AB\\
 | 
						|
I+\Omega' & = & (AB)^{T}(I+\Skew{S\omega})(AB)\\
 | 
						|
\Omega' & = & R'^{T}\Skew{S\omega}R'\\
 | 
						|
\Omega' & = & \Skew{R'^{T}S\omega}\\
 | 
						|
\omega' & = & R'^{T}S\omega
 | 
						|
\end{eqnarray*}
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
For the second argument 
 | 
						|
\begin_inset Formula $R$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 we now simply have:
 | 
						|
\begin_inset Formula 
 | 
						|
\begin{eqnarray*}
 | 
						|
AB(I+\Omega') & = & AB(I+\Omega)\\
 | 
						|
\Omega' & = & \Omega\\
 | 
						|
\omega' & = & \omega
 | 
						|
\end{eqnarray*}
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
The scalar derivatives can be found by realizing that 
 | 
						|
\begin_inset Formula 
 | 
						|
\[
 | 
						|
\left(\begin{array}{c}
 | 
						|
a'\\
 | 
						|
b'\\
 | 
						|
...
 | 
						|
\end{array}\right)=\left(\begin{array}{c}
 | 
						|
a\\
 | 
						|
b\\
 | 
						|
0
 | 
						|
\end{array}\right)-R^{T}t^{w}
 | 
						|
\]
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
where we don't care about the third row.
 | 
						|
 Hence
 | 
						|
\begin_inset Formula 
 | 
						|
\[
 | 
						|
\frac{\partial(\left(R(I+\Omega_{2})\right)^{T}t^{w})}{\partial\omega}=-\frac{\partial(\Omega_{2}R^{T}t^{w})}{\partial\omega}=-\Skew{R^{T}t^{w}}=\left[\begin{array}{ccc}
 | 
						|
0 & R_{3}^{T}t^{w} & -R_{2}^{T}t^{w}\\
 | 
						|
-R_{3}^{T}t^{w} & 0 & R_{1}^{T}t^{w}\\
 | 
						|
... & ... & 0
 | 
						|
\end{array}\right]
 | 
						|
\]
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Section
 | 
						|
 | 
						|
\series bold
 | 
						|
Aligning 3D Scans
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Standard
 | 
						|
Below is the explanation underlying Pose3.align, i.e.
 | 
						|
 aligning two point clouds using SVD.
 | 
						|
 Inspired but modified from CVOnline...
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Standard
 | 
						|
 | 
						|
\emph on
 | 
						|
Our
 | 
						|
\emph default
 | 
						|
 model is
 | 
						|
\begin_inset Formula 
 | 
						|
\[
 | 
						|
p^{c}=R\left(p^{w}-t\right)
 | 
						|
\]
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
i.e., 
 | 
						|
\begin_inset Formula $R$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 is from camera to world, and 
 | 
						|
\begin_inset Formula $t$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 is the camera location in world coordinates.
 | 
						|
 The objective function is
 | 
						|
\begin_inset Formula 
 | 
						|
\begin{equation}
 | 
						|
\frac{1}{2}\sum\left(p^{c}-R(p^{w}-t)\right)^{2}=\frac{1}{2}\sum\left(p^{c}-Rp^{w}+Rt\right)^{2}=\frac{1}{2}\sum\left(p^{c}-Rp^{w}-t'\right)^{2}\label{eq:J}
 | 
						|
\end{equation}
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
where 
 | 
						|
\begin_inset Formula $t'=-Rt$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 is the location of the origin in the camera frame.
 | 
						|
 Taking the derivative with respect to 
 | 
						|
\begin_inset Formula $t'$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 and setting to zero we have
 | 
						|
\begin_inset Formula 
 | 
						|
\[
 | 
						|
\sum\left(p^{c}-Rp^{w}-t'\right)=0
 | 
						|
\]
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
or
 | 
						|
\begin_inset Formula 
 | 
						|
\begin{equation}
 | 
						|
t'=\frac{1}{n}\sum\left(p^{c}-Rp^{w}\right)=\bar{p}^{c}-R\bar{p}^{w}\label{eq:t}
 | 
						|
\end{equation}
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
here 
 | 
						|
\begin_inset Formula $\bar{p}^{c}$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 and 
 | 
						|
\begin_inset Formula $\bar{p}^{w}$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 are the point cloud centroids.
 | 
						|
 Substituting back into 
 | 
						|
\begin_inset CommandInset ref
 | 
						|
LatexCommand eqref
 | 
						|
reference "eq:J"
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
, we get
 | 
						|
\begin_inset Formula 
 | 
						|
\[
 | 
						|
\frac{1}{2}\sum\left(p^{c}-R(p^{w}-t)\right)^{2}=\frac{1}{2}\sum\left(\left(p^{c}-\bar{p}^{c}\right)-R\left(p^{w}-\bar{p}^{w}\right)\right)^{2}=\frac{1}{2}\sum\left(\hat{p}^{c}-R\hat{p}^{w}\right)^{2}
 | 
						|
\]
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
Now, to minimize the above it suffices to maximize (see CVOnline) 
 | 
						|
\begin_inset Formula 
 | 
						|
\[
 | 
						|
\mathop{trace}\left(R^{T}C\right)
 | 
						|
\]
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
where 
 | 
						|
\begin_inset Formula $C=\sum\hat{p}^{c}\left(\hat{p}^{w}\right)^{T}$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 is the correlation matrix.
 | 
						|
 Intuitively, the cloud of points is rotated to align with the principal
 | 
						|
 axes.
 | 
						|
 This can be achieved by SVD decomposition on 
 | 
						|
\begin_inset Formula $C$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 | 
						|
\begin_inset Formula 
 | 
						|
\[
 | 
						|
C=USV^{T}
 | 
						|
\]
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
and setting 
 | 
						|
\begin_inset Formula 
 | 
						|
\[
 | 
						|
R=UV^{T}
 | 
						|
\]
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
Clearly, from 
 | 
						|
\begin_inset CommandInset ref
 | 
						|
LatexCommand eqref
 | 
						|
reference "eq:t"
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
 we then also recover the optimal 
 | 
						|
\begin_inset Formula $t$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 as 
 | 
						|
\begin_inset Formula 
 | 
						|
\[
 | 
						|
t=\bar{p}^{w}-R^{T}\bar{p}^{c}
 | 
						|
\]
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Section*
 | 
						|
Appendix
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Subsection*
 | 
						|
Differentiation Rules
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Standard
 | 
						|
Spivak 
 | 
						|
\begin_inset CommandInset citation
 | 
						|
LatexCommand cite
 | 
						|
key "Spivak65book"
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
 also notes some multivariate derivative rules defined component-wise, but
 | 
						|
 they are not that useful in practice:
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Itemize
 | 
						|
Since 
 | 
						|
\begin_inset Formula $f:\Multi nm$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 is defined in terms of 
 | 
						|
\begin_inset Formula $m$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 component functions 
 | 
						|
\begin_inset Formula $f^{i}$
 | 
						|
\end_inset
 | 
						|
 | 
						|
, then 
 | 
						|
\begin_inset Formula $f$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 is differentiable at 
 | 
						|
\begin_inset Formula $a$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 iff each 
 | 
						|
\begin_inset Formula $f^{i}$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 is, and the Jacobian matrix 
 | 
						|
\begin_inset Formula $F_{a}$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 is the 
 | 
						|
\begin_inset Formula $m\times n$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 matrix whose 
 | 
						|
\begin_inset Formula $i^{th}$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 row is 
 | 
						|
\begin_inset Formula $\left(f^{i}\right)'(a)$
 | 
						|
\end_inset
 | 
						|
 | 
						|
: 
 | 
						|
\begin_inset Formula 
 | 
						|
\[
 | 
						|
F_{a}\define f'(a)=\left[\begin{array}{c}
 | 
						|
\left(f^{1}\right)'(a)\\
 | 
						|
\vdots\\
 | 
						|
\left(f^{m}\right)'(a)
 | 
						|
\end{array}\right]
 | 
						|
\]
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Itemize
 | 
						|
Scalar differentiation rules: if 
 | 
						|
\begin_inset Formula $f,g:\OneD n$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 are differentiable at 
 | 
						|
\begin_inset Formula $a$
 | 
						|
\end_inset
 | 
						|
 | 
						|
, then
 | 
						|
\begin_inset Formula 
 | 
						|
\[
 | 
						|
(f+g)'(a)=F_{a}+G_{a}
 | 
						|
\]
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
 | 
						|
\begin_inset Formula 
 | 
						|
\[
 | 
						|
(f\cdot g)'(a)=g(a)F_{a}+f(a)G_{a}
 | 
						|
\]
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
 | 
						|
\begin_inset Formula 
 | 
						|
\[
 | 
						|
(f/g)'(a)=\frac{1}{g(a)^{2}}\left[g(a)F_{a}-f(a)G_{a}\right]
 | 
						|
\]
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Subsection*
 | 
						|
Tangent Spaces and the Tangent Bundle
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Standard
 | 
						|
The following is adapted from Appendix A in 
 | 
						|
\begin_inset CommandInset citation
 | 
						|
LatexCommand cite
 | 
						|
key "Murray94book"
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
.
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Standard
 | 
						|
The 
 | 
						|
\series bold
 | 
						|
tangent space
 | 
						|
\series default
 | 
						|
 
 | 
						|
\begin_inset Formula $T_{p}M$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 of a manifold 
 | 
						|
\begin_inset Formula $M$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 at a point 
 | 
						|
\begin_inset Formula $p\in M$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 is the vector space of 
 | 
						|
\series bold
 | 
						|
tangent vectors
 | 
						|
\series default
 | 
						|
 at 
 | 
						|
\begin_inset Formula $p$
 | 
						|
\end_inset
 | 
						|
 | 
						|
.
 | 
						|
 The 
 | 
						|
\series bold
 | 
						|
tangent bundle
 | 
						|
\series default
 | 
						|
 
 | 
						|
\begin_inset Formula $TM$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 is the set of all tangent vectors
 | 
						|
\begin_inset Formula 
 | 
						|
\[
 | 
						|
TM\define\bigcup_{p\in M}T_{p}M
 | 
						|
\]
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
A 
 | 
						|
\series bold
 | 
						|
vector field
 | 
						|
\series default
 | 
						|
 
 | 
						|
\begin_inset Formula $X:M\rightarrow TM$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 assigns a single tangent vector 
 | 
						|
\begin_inset Formula $x\in T_{p}M$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 to each point 
 | 
						|
\begin_inset Formula $p$
 | 
						|
\end_inset
 | 
						|
 | 
						|
.
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Standard
 | 
						|
If 
 | 
						|
\begin_inset Formula $F:M\rightarrow N$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 is a smooth map from a manifold 
 | 
						|
\begin_inset Formula $M$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 to a manifold 
 | 
						|
\begin_inset Formula $N$
 | 
						|
\end_inset
 | 
						|
 | 
						|
, then we can define the
 | 
						|
\series bold
 | 
						|
 tangent map
 | 
						|
\series default
 | 
						|
 of 
 | 
						|
\begin_inset Formula $F$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 at 
 | 
						|
\begin_inset Formula $p$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 as the linear map 
 | 
						|
\begin_inset Formula $F_{*p}:T_{p}M\rightarrow T_{F(p)}N$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 that maps tangent vectors in 
 | 
						|
\begin_inset Formula $T_{p}M$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 at 
 | 
						|
\begin_inset Formula $p$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 to tangent vectors in 
 | 
						|
\begin_inset Formula $T_{F(p)}N$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 at the image 
 | 
						|
\begin_inset Formula $F(p)$
 | 
						|
\end_inset
 | 
						|
 | 
						|
.
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Subsection*
 | 
						|
Homomorphisms
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Standard
 | 
						|
The following 
 | 
						|
\emph on
 | 
						|
might be
 | 
						|
\emph default
 | 
						|
 relevant 
 | 
						|
\begin_inset CommandInset citation
 | 
						|
LatexCommand cite
 | 
						|
after "page 45"
 | 
						|
key "Hall00book"
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
: suppose that 
 | 
						|
\begin_inset Formula $\Phi:G\rightarrow H$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 is a mapping (Lie group homomorphism).
 | 
						|
 Then there exists a unique linear map 
 | 
						|
\begin_inset Formula $\phi:\gg\rightarrow\mathfrak{h}$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 
 | 
						|
\begin_inset Formula 
 | 
						|
\[
 | 
						|
\phi(\xhat)\define\lim_{t\rightarrow0}\frac{d}{dt}\Phi\left(e^{t\xhat}\right)
 | 
						|
\]
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
such that
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Enumerate
 | 
						|
\begin_inset Formula $\Phi\left(e^{\xhat}\right)=e^{\phi\left(\xhat\right)}$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Enumerate
 | 
						|
\begin_inset Formula $\phi\left(T\xhat T^{-1}\right)=\Phi(T)\phi(\xhat)\Phi(T^{-1})$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Enumerate
 | 
						|
\begin_inset Formula $\phi\left([\xhat,\yhat]\right)=\left[\phi(\xhat),\phi(\yhat)\right]$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Standard
 | 
						|
In other words, the map 
 | 
						|
\begin_inset Formula $\phi$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 is the derivative of 
 | 
						|
\begin_inset Formula $\Phi$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 at the identity.
 | 
						|
 As an example, suppose 
 | 
						|
\begin_inset Formula $\Phi(g)=g^{-1}$
 | 
						|
\end_inset
 | 
						|
 | 
						|
, then the corresponding derivative 
 | 
						|
\emph on
 | 
						|
at the identity 
 | 
						|
\emph default
 | 
						|
is
 | 
						|
\begin_inset Formula 
 | 
						|
\[
 | 
						|
\phi(\xhat)\define\lim_{t\rightarrow0}\frac{d}{dt}\left(e^{t\xhat}\right)^{-1}=\lim_{t\rightarrow0}\frac{d}{dt}e^{-t\xhat}=-\xhat\lim_{t\rightarrow0}e^{-t\xhat}=-\xhat
 | 
						|
\]
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
In general it suffices to compute 
 | 
						|
\begin_inset Formula $\phi$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 for a basis of 
 | 
						|
\begin_inset Formula $\gg$
 | 
						|
\end_inset
 | 
						|
 | 
						|
.
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Standard
 | 
						|
\begin_inset Note Note
 | 
						|
status collapsed
 | 
						|
 | 
						|
\begin_layout Plain Layout
 | 
						|
Undercooked: What if we want the derivative of 
 | 
						|
\begin_inset Formula $\Phi$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 at some other element 
 | 
						|
\begin_inset Formula $g$
 | 
						|
\end_inset
 | 
						|
 | 
						|
? In other words, if we apply 
 | 
						|
\begin_inset Formula $\Phi$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 at 
 | 
						|
\begin_inset Formula $g$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 incremented by some Lie algebra element 
 | 
						|
\begin_inset Formula $e^{\xhat}$
 | 
						|
\end_inset
 | 
						|
 | 
						|
, then we are looking for a 
 | 
						|
\begin_inset Formula $\yhat\in\gg$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 will yield the same result: 
 | 
						|
\begin_inset Formula 
 | 
						|
\[
 | 
						|
\Phi\left(g\right)\lim_{t\rightarrow0}\frac{d}{dt}e^{t\yhat}=\lim_{t\rightarrow0}\frac{d}{dt}\Phi\left(ge^{t\xhat}\right)
 | 
						|
\]
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
 | 
						|
\begin_inset Formula 
 | 
						|
\[
 | 
						|
\lim_{t\rightarrow0}\frac{d}{dt}e^{t\yhat}=\Phi\left(g\right)^{-1}\lim_{t\rightarrow0}\frac{d}{dt}\Phi\left(ge^{t\xhat}\right)
 | 
						|
\]
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
 | 
						|
\end_layout
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Standard
 | 
						|
\begin_inset Note Note
 | 
						|
status collapsed
 | 
						|
 | 
						|
\begin_layout Plain Layout
 | 
						|
Let us define two mappings
 | 
						|
\begin_inset Formula 
 | 
						|
\[
 | 
						|
\Phi_{1}(A)=AB\mbox{ and }\Phi_{2}(B)=AB
 | 
						|
\]
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
Then 
 | 
						|
\begin_inset Formula 
 | 
						|
\[
 | 
						|
\phi_{1}(\xhat)=\lim_{t\rightarrow0}\frac{d}{dt}\Phi_{1}\left(e^{t\xhat}B\right)=
 | 
						|
\]
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
 | 
						|
\end_layout
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Standard
 | 
						|
\begin_inset CommandInset bibtex
 | 
						|
LatexCommand bibtex
 | 
						|
bibfiles "/Users/dellaert/papers/refs"
 | 
						|
options "plain"
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
 | 
						|
\end_layout
 | 
						|
 | 
						|
\end_body
 | 
						|
\end_document
 |